Struct cranelift_codegen::ir::constant::ConstantData
source · pub struct ConstantData(_);Expand description
This type describes the actual constant data. Note that the bytes stored in this structure are expected to be in little-endian order; this is due to ease-of-use when interacting with WebAssembly values, which are little-endian by design.
Implementations§
source§impl ConstantData
impl ConstantData
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Return the number of bytes in the constant.
Examples found in repository?
src/ir/constant.rs (line 94)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
pub fn expand_to(mut self, expected_size: usize) -> Self {
if self.len() > expected_size {
panic!(
"The constant data is already expanded beyond {} bytes",
expected_size
)
}
self.0.resize(expected_size, 0);
self
}
}
impl fmt::Display for ConstantData {
/// Print the constant data in hexadecimal format, e.g. 0x000102030405060708090a0b0c0d0e0f.
/// This function will flip the stored order of bytes--little-endian--to the more readable
/// big-endian ordering.
///
/// ```
/// use cranelift_codegen::ir::ConstantData;
/// let data = ConstantData::from([3, 2, 1, 0, 0].as_ref()); // note the little-endian order
/// assert_eq!(data.to_string(), "0x0000010203");
/// ```
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if !self.is_empty() {
write!(f, "0x")?;
for b in self.0.iter().rev() {
write!(f, "{:02x}", b)?;
}
}
Ok(())
}
}
impl FromStr for ConstantData {
type Err = &'static str;
/// Parse a hexadecimal string to `ConstantData`. This is the inverse of `Display::fmt`.
///
/// ```
/// use cranelift_codegen::ir::ConstantData;
/// let c: ConstantData = "0x000102".parse().unwrap();
/// assert_eq!(c.into_vec(), [2, 1, 0]);
/// ```
fn from_str(s: &str) -> Result<Self, &'static str> {
if s.len() <= 2 || &s[0..2] != "0x" {
return Err("Expected a hexadecimal string, e.g. 0x1234");
}
// clean and check the string
let cleaned: Vec<u8> = s[2..]
.as_bytes()
.iter()
.filter(|&&b| b as char != '_')
.cloned()
.collect(); // remove 0x prefix and any intervening _ characters
if cleaned.is_empty() {
Err("Hexadecimal string must have some digits")
} else if cleaned.len() % 2 != 0 {
Err("Hexadecimal string must have an even number of digits")
} else if cleaned.len() > 32 {
Err("Hexadecimal string has too many digits to fit in a 128-bit vector")
} else {
let mut buffer = Vec::with_capacity((s.len() - 2) / 2);
for i in (0..cleaned.len()).step_by(2) {
let pair = from_utf8(&cleaned[i..i + 2])
.or_else(|_| Err("Unable to parse hexadecimal pair as UTF-8"))?;
let byte = u8::from_str_radix(pair, 16)
.or_else(|_| Err("Unable to parse as hexadecimal"))?;
buffer.insert(0, byte);
}
Ok(Self(buffer))
}
}
}
/// Maintains the mapping between a constant handle (i.e. [`Constant`](crate::ir::Constant)) and
/// its constant data (i.e. [`ConstantData`](crate::ir::ConstantData)).
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct ConstantPool {
/// This mapping maintains the insertion order as long as Constants are created with
/// sequentially increasing integers.
///
/// It is important that, by construction, no entry in that list gets removed. If that ever
/// need to happen, don't forget to update the `Constant` generation scheme.
handles_to_values: BTreeMap<Constant, ConstantData>,
/// Mapping of hashed `ConstantData` to the index into the other hashmap.
///
/// This allows for deduplication of entries into the `handles_to_values` mapping.
values_to_handles: BTreeMap<ConstantData, Constant>,
}
impl ConstantPool {
/// Create a new constant pool instance.
pub fn new() -> Self {
Self {
handles_to_values: BTreeMap::new(),
values_to_handles: BTreeMap::new(),
}
}
/// Empty the constant pool of all data.
pub fn clear(&mut self) {
self.handles_to_values.clear();
self.values_to_handles.clear();
}
/// Insert constant data into the pool, returning a handle for later referencing; when constant
/// data is inserted that is a duplicate of previous constant data, the existing handle will be
/// returned.
pub fn insert(&mut self, constant_value: ConstantData) -> Constant {
if let Some(cst) = self.values_to_handles.get(&constant_value) {
return *cst;
}
let constant_handle = Constant::new(self.len());
self.set(constant_handle, constant_value);
constant_handle
}
/// Retrieve the constant data given a handle.
pub fn get(&self, constant_handle: Constant) -> &ConstantData {
assert!(self.handles_to_values.contains_key(&constant_handle));
self.handles_to_values.get(&constant_handle).unwrap()
}
/// Link a constant handle to its value. This does not de-duplicate data but does avoid
/// replacing any existing constant values. use `set` to tie a specific `const42` to its value;
/// use `insert` to add a value and return the next available `const` entity.
pub fn set(&mut self, constant_handle: Constant, constant_value: ConstantData) {
let replaced = self
.handles_to_values
.insert(constant_handle, constant_value.clone());
assert!(
replaced.is_none(),
"attempted to overwrite an existing constant {:?}: {:?} => {:?}",
constant_handle,
&constant_value,
replaced.unwrap()
);
self.values_to_handles
.insert(constant_value, constant_handle);
}
/// Iterate over the constants in insertion order.
pub fn iter(&self) -> impl Iterator<Item = (&Constant, &ConstantData)> {
self.handles_to_values.iter()
}
/// Iterate over mutable entries in the constant pool in insertion order.
pub fn entries_mut(&mut self) -> impl Iterator<Item = &mut ConstantData> {
self.handles_to_values.values_mut()
}
/// Return the number of constants in the pool.
pub fn len(&self) -> usize {
self.handles_to_values.len()
}
/// Return the combined size of all of the constant values in the pool.
pub fn byte_size(&self) -> usize {
self.handles_to_values.values().map(|c| c.len()).sum()
}More examples
src/verifier/mod.rs (line 1121)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
fn verify_constant_size(
&self,
inst: Inst,
constant: Constant,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize;
let constant_size = self.func.dfg.constants.get(constant).len();
if type_size != constant_size {
errors.fatal((
inst,
format!(
"The instruction expects {} to have a size of {} bytes but it has {}",
constant, type_size, constant_size
),
))
} else {
Ok(())
}
}Trait Implementations§
source§impl Clone for ConstantData
impl Clone for ConstantData
source§fn clone(&self) -> ConstantData
fn clone(&self) -> ConstantData
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for ConstantData
impl Debug for ConstantData
source§impl Default for ConstantData
impl Default for ConstantData
source§fn default() -> ConstantData
fn default() -> ConstantData
Returns the “default value” for a type. Read more
source§impl Display for ConstantData
impl Display for ConstantData
source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Print the constant data in hexadecimal format, e.g. 0x000102030405060708090a0b0c0d0e0f. This function will flip the stored order of bytes–little-endian–to the more readable big-endian ordering.
use cranelift_codegen::ir::ConstantData;
let data = ConstantData::from([3, 2, 1, 0, 0].as_ref()); // note the little-endian order
assert_eq!(data.to_string(), "0x0000010203");source§impl From<&[u8]> for ConstantData
impl From<&[u8]> for ConstantData
source§impl From<V128Imm> for ConstantData
impl From<V128Imm> for ConstantData
source§impl FromIterator<u8> for ConstantData
impl FromIterator<u8> for ConstantData
source§impl FromStr for ConstantData
impl FromStr for ConstantData
source§impl Hash for ConstantData
impl Hash for ConstantData
source§impl Ord for ConstantData
impl Ord for ConstantData
source§fn cmp(&self, other: &ConstantData) -> Ordering
fn cmp(&self, other: &ConstantData) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
source§impl PartialEq<ConstantData> for ConstantData
impl PartialEq<ConstantData> for ConstantData
source§fn eq(&self, other: &ConstantData) -> bool
fn eq(&self, other: &ConstantData) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl PartialOrd<ConstantData> for ConstantData
impl PartialOrd<ConstantData> for ConstantData
source§fn partial_cmp(&self, other: &ConstantData) -> Option<Ordering>
fn partial_cmp(&self, other: &ConstantData) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moreimpl Eq for ConstantData
impl StructuralEq for ConstantData
impl StructuralPartialEq for ConstantData
Auto Trait Implementations§
impl RefUnwindSafe for ConstantData
impl Send for ConstantData
impl Sync for ConstantData
impl Unpin for ConstantData
impl UnwindSafe for ConstantData
Blanket Implementations§
source§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Compare self to
key and return true if they are equal.