cranelift_codegen/machinst/vcode.rs
1//! This implements the VCode container: a CFG of Insts that have been lowered.
2//!
3//! VCode is virtual-register code. An instruction in VCode is almost a machine
4//! instruction; however, its register slots can refer to virtual registers in
5//! addition to real machine registers.
6//!
7//! VCode is structured with traditional basic blocks, and
8//! each block must be terminated by an unconditional branch (one target), a
9//! conditional branch (two targets), or a return (no targets). Note that this
10//! slightly differs from the machine code of most ISAs: in most ISAs, a
11//! conditional branch has one target (and the not-taken case falls through).
12//! However, we expect that machine backends will elide branches to the following
13//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
14//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
15//! play with layout prior to final binary emission, as well, if we want.
16//!
17//! See the main module comment in `mod.rs` for more details on the VCode-based
18//! backend pipeline.
19
20use crate::ir::pcc::*;
21use crate::ir::{self, types, Constant, ConstantData, ValueLabel};
22use crate::machinst::*;
23use crate::ranges::Ranges;
24use crate::timing;
25use crate::trace;
26use crate::CodegenError;
27use crate::{LabelValueLoc, ValueLocRange};
28use regalloc2::{
29 Edit, Function as RegallocFunction, InstOrEdit, InstRange, MachineEnv, Operand,
30 OperandConstraint, OperandKind, PRegSet, RegClass,
31};
32use rustc_hash::FxHashMap;
33
34use core::mem::take;
35use cranelift_entity::{entity_impl, Keys};
36use std::collections::hash_map::Entry;
37use std::collections::HashMap;
38use std::fmt;
39
40/// Index referring to an instruction in VCode.
41pub type InsnIndex = regalloc2::Inst;
42
43/// Extension trait for `InsnIndex` to allow conversion to a
44/// `BackwardsInsnIndex`.
45trait ToBackwardsInsnIndex {
46 fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex;
47}
48
49impl ToBackwardsInsnIndex for InsnIndex {
50 fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex {
51 BackwardsInsnIndex::new(num_insts - self.index() - 1)
52 }
53}
54
55/// An index referring to an instruction in the VCode when it is backwards,
56/// during VCode construction.
57#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
58#[cfg_attr(
59 feature = "enable-serde",
60 derive(::serde::Serialize, ::serde::Deserialize)
61)]
62pub struct BackwardsInsnIndex(InsnIndex);
63
64impl BackwardsInsnIndex {
65 pub fn new(i: usize) -> Self {
66 BackwardsInsnIndex(InsnIndex::new(i))
67 }
68}
69
70/// Index referring to a basic block in VCode.
71pub type BlockIndex = regalloc2::Block;
72
73/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
74/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
75pub trait VCodeInst: MachInst + MachInstEmit {}
76impl<I: MachInst + MachInstEmit> VCodeInst for I {}
77
78/// A function in "VCode" (virtualized-register code) form, after
79/// lowering. This is essentially a standard CFG of basic blocks,
80/// where each basic block consists of lowered instructions produced
81/// by the machine-specific backend.
82///
83/// Note that the VCode is immutable once produced, and is not
84/// modified by register allocation in particular. Rather, register
85/// allocation on the `VCode` produces a separate `regalloc2::Output`
86/// struct, and this can be passed to `emit`. `emit` in turn does not
87/// modify the vcode, but produces an `EmitResult`, which contains the
88/// machine code itself, and the associated disassembly and/or
89/// metadata as requested.
90pub struct VCode<I: VCodeInst> {
91 /// VReg IR-level types.
92 vreg_types: Vec<Type>,
93
94 /// Lowered machine instructions in order corresponding to the original IR.
95 insts: Vec<I>,
96
97 /// A map from backwards instruction index to the user stack map for that
98 /// instruction.
99 ///
100 /// This is a sparse side table that only has entries for instructions that
101 /// are safepoints, and only for a subset of those that have an associated
102 /// user stack map.
103 user_stack_maps: FxHashMap<BackwardsInsnIndex, ir::UserStackMap>,
104
105 /// Operands: pre-regalloc references to virtual registers with
106 /// constraints, in one flattened array. This allows the regalloc
107 /// to efficiently access all operands without requiring expensive
108 /// matches or method invocations on insts.
109 operands: Vec<Operand>,
110
111 /// Operand index ranges: for each instruction in `insts`, there
112 /// is a tuple here providing the range in `operands` for that
113 /// instruction's operands.
114 operand_ranges: Ranges,
115
116 /// Clobbers: a sparse map from instruction indices to clobber masks.
117 clobbers: FxHashMap<InsnIndex, PRegSet>,
118
119 /// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
120 /// reasonable to keep one of these per instruction.)
121 srclocs: Vec<RelSourceLoc>,
122
123 /// Entry block.
124 entry: BlockIndex,
125
126 /// Block instruction indices.
127 block_ranges: Ranges,
128
129 /// Block successors: index range in the `block_succs` list.
130 block_succ_range: Ranges,
131
132 /// Block successor lists, concatenated into one vec. The
133 /// `block_succ_range` list of tuples above gives (start, end)
134 /// ranges within this list that correspond to each basic block's
135 /// successors.
136 block_succs: Vec<regalloc2::Block>,
137
138 /// Block predecessors: index range in the `block_preds` list.
139 block_pred_range: Ranges,
140
141 /// Block predecessor lists, concatenated into one vec. The
142 /// `block_pred_range` list of tuples above gives (start, end)
143 /// ranges within this list that correspond to each basic block's
144 /// predecessors.
145 block_preds: Vec<regalloc2::Block>,
146
147 /// Block parameters: index range in `block_params` below.
148 block_params_range: Ranges,
149
150 /// Block parameter lists, concatenated into one vec. The
151 /// `block_params_range` list of tuples above gives (start, end)
152 /// ranges within this list that correspond to each basic block's
153 /// blockparam vregs.
154 block_params: Vec<regalloc2::VReg>,
155
156 /// Outgoing block arguments on branch instructions, concatenated
157 /// into one list.
158 ///
159 /// Note that this is conceptually a 3D array: we have a VReg list
160 /// per block, per successor. We flatten those three dimensions
161 /// into this 1D vec, then store index ranges in two levels of
162 /// indirection.
163 ///
164 /// Indexed by the indices in `branch_block_arg_succ_range`.
165 branch_block_args: Vec<regalloc2::VReg>,
166
167 /// Array of sequences of (start, end) tuples in
168 /// `branch_block_args`, one for each successor; these sequences
169 /// for each block are concatenated.
170 ///
171 /// Indexed by the indices in `branch_block_arg_succ_range`.
172 branch_block_arg_range: Ranges,
173
174 /// For a given block, indices in `branch_block_arg_range`
175 /// corresponding to all of its successors.
176 branch_block_arg_succ_range: Ranges,
177
178 /// Block-order information.
179 block_order: BlockLoweringOrder,
180
181 /// ABI object.
182 pub(crate) abi: Callee<I::ABIMachineSpec>,
183
184 /// Constant information used during code emission. This should be
185 /// immutable across function compilations within the same module.
186 emit_info: I::Info,
187
188 /// Reference-typed `regalloc2::VReg`s. The regalloc requires
189 /// these in a dense slice (as opposed to querying the
190 /// reftype-status of each vreg) for efficient iteration.
191 reftyped_vregs: Vec<VReg>,
192
193 /// Constants.
194 pub(crate) constants: VCodeConstants,
195
196 /// Value labels for debuginfo attached to vregs.
197 debug_value_labels: Vec<(VReg, InsnIndex, InsnIndex, u32)>,
198
199 pub(crate) sigs: SigSet,
200
201 /// Facts on VRegs, for proof-carrying code verification.
202 facts: Vec<Option<Fact>>,
203}
204
205/// The result of `VCode::emit`. Contains all information computed
206/// during emission: actual machine code, optionally a disassembly,
207/// and optionally metadata about the code layout.
208pub struct EmitResult {
209 /// The MachBuffer containing the machine code.
210 pub buffer: MachBufferFinalized<Stencil>,
211
212 /// Offset of each basic block, recorded during emission. Computed
213 /// only if `debug_value_labels` is non-empty.
214 pub bb_offsets: Vec<CodeOffset>,
215
216 /// Final basic-block edges, in terms of code offsets of
217 /// bb-starts. Computed only if `debug_value_labels` is non-empty.
218 pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
219
220 /// Final length of function body.
221 pub func_body_len: CodeOffset,
222
223 /// The pretty-printed disassembly, if any. This uses the same
224 /// pretty-printing for MachInsts as the pre-regalloc VCode Debug
225 /// implementation, but additionally includes the prologue and
226 /// epilogue(s), and makes use of the regalloc results.
227 pub disasm: Option<String>,
228
229 /// Offsets of sized stackslots.
230 pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
231
232 /// Offsets of dynamic stackslots.
233 pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
234
235 /// Value-labels information (debug metadata).
236 pub value_labels_ranges: ValueLabelsRanges,
237
238 /// Stack frame size.
239 pub frame_size: u32,
240}
241
242/// A builder for a VCode function body.
243///
244/// This builder has the ability to accept instructions in either
245/// forward or reverse order, depending on the pass direction that
246/// produces the VCode. The lowering from CLIF to VCode<MachInst>
247/// ordinarily occurs in reverse order (in order to allow instructions
248/// to be lowered only if used, and not merged) so a reversal will
249/// occur at the end of lowering to ensure the VCode is in machine
250/// order.
251///
252/// If built in reverse, block and instruction indices used once the
253/// VCode is built are relative to the final (reversed) order, not the
254/// order of construction. Note that this means we do not know the
255/// final block or instruction indices when building, so we do not
256/// hand them out. (The user is assumed to know them when appending
257/// terminator instructions with successor blocks.)
258pub struct VCodeBuilder<I: VCodeInst> {
259 /// In-progress VCode.
260 pub(crate) vcode: VCode<I>,
261
262 /// In what direction is the build occurring?
263 direction: VCodeBuildDirection,
264
265 /// Debug-value label in-progress map, keyed by label. For each
266 /// label, we keep disjoint ranges mapping to vregs. We'll flatten
267 /// this into (vreg, range, label) tuples when done.
268 debug_info: FxHashMap<ValueLabel, Vec<(InsnIndex, InsnIndex, VReg)>>,
269}
270
271/// Direction in which a VCodeBuilder builds VCode.
272#[derive(Clone, Copy, Debug, PartialEq, Eq)]
273pub enum VCodeBuildDirection {
274 // TODO: add `Forward` once we need it and can test it adequately.
275 /// Backward-build pass: we expect the producer to call `emit()`
276 /// with instructions in reverse program order within each block.
277 Backward,
278}
279
280impl<I: VCodeInst> VCodeBuilder<I> {
281 /// Create a new VCodeBuilder.
282 pub fn new(
283 sigs: SigSet,
284 abi: Callee<I::ABIMachineSpec>,
285 emit_info: I::Info,
286 block_order: BlockLoweringOrder,
287 constants: VCodeConstants,
288 direction: VCodeBuildDirection,
289 ) -> Self {
290 let vcode = VCode::new(sigs, abi, emit_info, block_order, constants);
291
292 VCodeBuilder {
293 vcode,
294 direction,
295 debug_info: FxHashMap::default(),
296 }
297 }
298
299 pub fn init_retval_area(&mut self, vregs: &mut VRegAllocator<I>) -> CodegenResult<()> {
300 self.vcode.abi.init_retval_area(&self.vcode.sigs, vregs)
301 }
302
303 /// Access the ABI object.
304 pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
305 &self.vcode.abi
306 }
307
308 /// Access the ABI object.
309 pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
310 &mut self.vcode.abi
311 }
312
313 pub fn sigs(&self) -> &SigSet {
314 &self.vcode.sigs
315 }
316
317 pub fn sigs_mut(&mut self) -> &mut SigSet {
318 &mut self.vcode.sigs
319 }
320
321 /// Access to the BlockLoweringOrder object.
322 pub fn block_order(&self) -> &BlockLoweringOrder {
323 &self.vcode.block_order
324 }
325
326 /// Set the current block as the entry block.
327 pub fn set_entry(&mut self, block: BlockIndex) {
328 self.vcode.entry = block;
329 }
330
331 /// End the current basic block. Must be called after emitting vcode insts
332 /// for IR insts and prior to ending the function (building the VCode).
333 pub fn end_bb(&mut self) {
334 let end_idx = self.vcode.insts.len();
335 // Add the instruction index range to the list of blocks.
336 self.vcode.block_ranges.push_end(end_idx);
337 // End the successors list.
338 let succ_end = self.vcode.block_succs.len();
339 self.vcode.block_succ_range.push_end(succ_end);
340 // End the blockparams list.
341 let block_params_end = self.vcode.block_params.len();
342 self.vcode.block_params_range.push_end(block_params_end);
343 // End the branch blockparam args list.
344 let branch_block_arg_succ_end = self.vcode.branch_block_arg_range.len();
345 self.vcode
346 .branch_block_arg_succ_range
347 .push_end(branch_block_arg_succ_end);
348 }
349
350 pub fn add_block_param(&mut self, param: VirtualReg) {
351 self.vcode.block_params.push(param.into());
352 }
353
354 fn add_branch_args_for_succ(&mut self, args: &[Reg]) {
355 self.vcode
356 .branch_block_args
357 .extend(args.iter().map(|&arg| VReg::from(arg)));
358 let end = self.vcode.branch_block_args.len();
359 self.vcode.branch_block_arg_range.push_end(end);
360 }
361
362 /// Push an instruction for the current BB and current IR inst
363 /// within the BB.
364 pub fn push(&mut self, insn: I, loc: RelSourceLoc) {
365 self.vcode.insts.push(insn);
366 self.vcode.srclocs.push(loc);
367 }
368
369 /// Add a successor block with branch args.
370 pub fn add_succ(&mut self, block: BlockIndex, args: &[Reg]) {
371 self.vcode.block_succs.push(block);
372 self.add_branch_args_for_succ(args);
373 }
374
375 /// Add a debug value label to a register.
376 pub fn add_value_label(&mut self, reg: Reg, label: ValueLabel) {
377 // We'll fix up labels in reverse(). Because we're generating
378 // code bottom-to-top, the liverange of the label goes *from*
379 // the last index at which was defined (or 0, which is the end
380 // of the eventual function) *to* just this instruction, and
381 // no further.
382 let inst = InsnIndex::new(self.vcode.insts.len());
383 let labels = self.debug_info.entry(label).or_insert_with(|| vec![]);
384 let last = labels
385 .last()
386 .map(|(_start, end, _vreg)| *end)
387 .unwrap_or(InsnIndex::new(0));
388 labels.push((last, inst, reg.into()));
389 }
390
391 /// Access the constants.
392 pub fn constants(&mut self) -> &mut VCodeConstants {
393 &mut self.vcode.constants
394 }
395
396 fn compute_preds_from_succs(&mut self) {
397 // Do a linear-time counting sort: first determine how many
398 // times each block appears as a successor.
399 let mut starts = vec![0u32; self.vcode.num_blocks()];
400 for succ in &self.vcode.block_succs {
401 starts[succ.index()] += 1;
402 }
403
404 // Determine for each block the starting index where that
405 // block's predecessors should go. This is equivalent to the
406 // ranges we need to store in block_pred_range.
407 self.vcode.block_pred_range.reserve(starts.len());
408 let mut end = 0;
409 for count in starts.iter_mut() {
410 let start = end;
411 end += *count;
412 *count = start;
413 self.vcode.block_pred_range.push_end(end as usize);
414 }
415 let end = end as usize;
416 debug_assert_eq!(end, self.vcode.block_succs.len());
417
418 // Walk over the successors again, this time grouped by
419 // predecessor, and push the predecessor at the current
420 // starting position of each of its successors. We build
421 // each group of predecessors in whatever order Ranges::iter
422 // returns them; regalloc2 doesn't care.
423 self.vcode.block_preds.resize(end, BlockIndex::invalid());
424 for (pred, range) in self.vcode.block_succ_range.iter() {
425 let pred = BlockIndex::new(pred);
426 for succ in &self.vcode.block_succs[range] {
427 let pos = &mut starts[succ.index()];
428 self.vcode.block_preds[*pos as usize] = pred;
429 *pos += 1;
430 }
431 }
432 debug_assert!(self.vcode.block_preds.iter().all(|pred| pred.is_valid()));
433 }
434
435 /// Called once, when a build in Backward order is complete, to
436 /// perform the overall reversal (into final forward order) and
437 /// finalize metadata accordingly.
438 fn reverse_and_finalize(&mut self, vregs: &VRegAllocator<I>) {
439 let n_insts = self.vcode.insts.len();
440 if n_insts == 0 {
441 return;
442 }
443
444 // Reverse the per-block and per-inst sequences.
445 self.vcode.block_ranges.reverse_index();
446 self.vcode.block_ranges.reverse_target(n_insts);
447 // block_params_range is indexed by block (and blocks were
448 // traversed in reverse) so we reverse it; but block-param
449 // sequences in the concatenated vec can remain in reverse
450 // order (it is effectively an arena of arbitrarily-placed
451 // referenced sequences).
452 self.vcode.block_params_range.reverse_index();
453 // Likewise, we reverse block_succ_range, but the block_succ
454 // concatenated array can remain as-is.
455 self.vcode.block_succ_range.reverse_index();
456 self.vcode.insts.reverse();
457 self.vcode.srclocs.reverse();
458 // Likewise, branch_block_arg_succ_range is indexed by block
459 // so must be reversed.
460 self.vcode.branch_block_arg_succ_range.reverse_index();
461
462 // To translate an instruction index *endpoint* in reversed
463 // order to forward order, compute `n_insts - i`.
464 //
465 // Why not `n_insts - 1 - i`? That would be correct to
466 // translate an individual instruction index (for ten insts 0
467 // to 9 inclusive, inst 0 becomes 9, and inst 9 becomes
468 // 0). But for the usual inclusive-start, exclusive-end range
469 // idiom, inclusive starts become exclusive ends and
470 // vice-versa, so e.g. an (inclusive) start of 0 becomes an
471 // (exclusive) end of 10.
472 let translate = |inst: InsnIndex| InsnIndex::new(n_insts - inst.index());
473
474 // Generate debug-value labels based on per-label maps.
475 for (label, tuples) in &self.debug_info {
476 for &(start, end, vreg) in tuples {
477 let vreg = vregs.resolve_vreg_alias(vreg);
478 let fwd_start = translate(end);
479 let fwd_end = translate(start);
480 self.vcode
481 .debug_value_labels
482 .push((vreg, fwd_start, fwd_end, label.as_u32()));
483 }
484 }
485
486 // Now sort debug value labels by VReg, as required
487 // by regalloc2.
488 self.vcode
489 .debug_value_labels
490 .sort_unstable_by_key(|(vreg, _, _, _)| *vreg);
491 }
492
493 fn collect_operands(&mut self, vregs: &VRegAllocator<I>) {
494 let allocatable = PRegSet::from(self.vcode.machine_env());
495 for (i, insn) in self.vcode.insts.iter_mut().enumerate() {
496 // Push operands from the instruction onto the operand list.
497 //
498 // We rename through the vreg alias table as we collect
499 // the operands. This is better than a separate post-pass
500 // over operands, because it has more cache locality:
501 // operands only need to pass through L1 once. This is
502 // also better than renaming instructions'
503 // operands/registers while lowering, because here we only
504 // need to do the `match` over the instruction to visit
505 // its register fields (which is slow, branchy code) once.
506
507 let mut op_collector =
508 OperandCollector::new(&mut self.vcode.operands, allocatable, |vreg| {
509 vregs.resolve_vreg_alias(vreg)
510 });
511 insn.get_operands(&mut op_collector);
512 let (ops, clobbers) = op_collector.finish();
513 self.vcode.operand_ranges.push_end(ops);
514
515 if clobbers != PRegSet::default() {
516 self.vcode.clobbers.insert(InsnIndex::new(i), clobbers);
517 }
518
519 if let Some((dst, src)) = insn.is_move() {
520 // We should never see non-virtual registers present in move
521 // instructions.
522 assert!(
523 src.is_virtual(),
524 "the real register {:?} was used as the source of a move instruction",
525 src
526 );
527 assert!(
528 dst.to_reg().is_virtual(),
529 "the real register {:?} was used as the destination of a move instruction",
530 dst.to_reg()
531 );
532 }
533 }
534
535 // Translate blockparam args via the vreg aliases table as well.
536 for arg in &mut self.vcode.branch_block_args {
537 let new_arg = vregs.resolve_vreg_alias(*arg);
538 trace!("operandcollector: block arg {:?} -> {:?}", arg, new_arg);
539 *arg = new_arg;
540 }
541 }
542
543 /// Build the final VCode.
544 pub fn build(mut self, mut vregs: VRegAllocator<I>) -> VCode<I> {
545 self.vcode.vreg_types = take(&mut vregs.vreg_types);
546 self.vcode.facts = take(&mut vregs.facts);
547 self.vcode.reftyped_vregs = take(&mut vregs.reftyped_vregs);
548
549 if self.direction == VCodeBuildDirection::Backward {
550 self.reverse_and_finalize(&vregs);
551 }
552 self.collect_operands(&vregs);
553
554 // Apply register aliases to the `reftyped_vregs` list since this list
555 // will be returned directly to `regalloc2` eventually and all
556 // operands/results of instructions will use the alias-resolved vregs
557 // from `regalloc2`'s perspective.
558 //
559 // Also note that `reftyped_vregs` can't have duplicates, so after the
560 // aliases are applied duplicates are removed.
561 for reg in self.vcode.reftyped_vregs.iter_mut() {
562 *reg = vregs.resolve_vreg_alias(*reg);
563 }
564 self.vcode.reftyped_vregs.sort();
565 self.vcode.reftyped_vregs.dedup();
566
567 self.compute_preds_from_succs();
568 self.vcode.debug_value_labels.sort_unstable();
569
570 // At this point, nothing in the vcode should mention any
571 // VReg which has been aliased. All the appropriate rewriting
572 // should have happened above. Just to be sure, let's
573 // double-check each field which has vregs.
574 // Note: can't easily check vcode.insts, resolved in collect_operands.
575 // Operands are resolved in collect_operands.
576 vregs.debug_assert_no_vreg_aliases(self.vcode.operands.iter().map(|op| op.vreg()));
577 // Currently block params are never aliased to another vreg.
578 vregs.debug_assert_no_vreg_aliases(self.vcode.block_params.iter().copied());
579 // Branch block args are resolved in collect_operands.
580 vregs.debug_assert_no_vreg_aliases(self.vcode.branch_block_args.iter().copied());
581 // Reftyped vregs are resolved above in this function.
582 vregs.debug_assert_no_vreg_aliases(self.vcode.reftyped_vregs.iter().copied());
583 // Debug value labels are resolved in reverse_and_finalize.
584 vregs.debug_assert_no_vreg_aliases(
585 self.vcode.debug_value_labels.iter().map(|&(vreg, ..)| vreg),
586 );
587 // Facts are resolved eagerly during set_vreg_alias.
588 vregs.debug_assert_no_vreg_aliases(
589 self.vcode
590 .facts
591 .iter()
592 .zip(&vregs.vreg_types)
593 .enumerate()
594 .filter(|(_, (fact, _))| fact.is_some())
595 .map(|(vreg, (_, &ty))| {
596 let (regclasses, _) = I::rc_for_type(ty).unwrap();
597 VReg::new(vreg, regclasses[0])
598 }),
599 );
600
601 self.vcode
602 }
603
604 /// Add a user stack map for the associated instruction.
605 pub fn add_user_stack_map(
606 &mut self,
607 inst: BackwardsInsnIndex,
608 entries: &[ir::UserStackMapEntry],
609 ) {
610 let stack_map = ir::UserStackMap::new(entries, self.vcode.abi.sized_stackslot_offsets());
611 let old_entry = self.vcode.user_stack_maps.insert(inst, stack_map);
612 debug_assert!(old_entry.is_none());
613 }
614}
615
616/// Is this type a reference type?
617fn is_reftype(ty: Type) -> bool {
618 ty == types::R64 || ty == types::R32
619}
620
621const NO_INST_OFFSET: CodeOffset = u32::MAX;
622
623impl<I: VCodeInst> VCode<I> {
624 /// New empty VCode.
625 fn new(
626 sigs: SigSet,
627 abi: Callee<I::ABIMachineSpec>,
628 emit_info: I::Info,
629 block_order: BlockLoweringOrder,
630 constants: VCodeConstants,
631 ) -> Self {
632 let n_blocks = block_order.lowered_order().len();
633 VCode {
634 sigs,
635 vreg_types: vec![],
636 insts: Vec::with_capacity(10 * n_blocks),
637 user_stack_maps: FxHashMap::default(),
638 operands: Vec::with_capacity(30 * n_blocks),
639 operand_ranges: Ranges::with_capacity(10 * n_blocks),
640 clobbers: FxHashMap::default(),
641 srclocs: Vec::with_capacity(10 * n_blocks),
642 entry: BlockIndex::new(0),
643 block_ranges: Ranges::with_capacity(n_blocks),
644 block_succ_range: Ranges::with_capacity(n_blocks),
645 block_succs: Vec::with_capacity(n_blocks),
646 block_pred_range: Ranges::default(),
647 block_preds: Vec::new(),
648 block_params_range: Ranges::with_capacity(n_blocks),
649 block_params: Vec::with_capacity(5 * n_blocks),
650 branch_block_args: Vec::with_capacity(10 * n_blocks),
651 branch_block_arg_range: Ranges::with_capacity(2 * n_blocks),
652 branch_block_arg_succ_range: Ranges::with_capacity(n_blocks),
653 block_order,
654 abi,
655 emit_info,
656 reftyped_vregs: vec![],
657 constants,
658 debug_value_labels: vec![],
659 facts: vec![],
660 }
661 }
662
663 /// Get the ABI-dependent MachineEnv for managing register allocation.
664 pub fn machine_env(&self) -> &MachineEnv {
665 self.abi.machine_env(&self.sigs)
666 }
667
668 /// Get the number of blocks. Block indices will be in the range `0 ..
669 /// (self.num_blocks() - 1)`.
670 pub fn num_blocks(&self) -> usize {
671 self.block_ranges.len()
672 }
673
674 /// The number of lowered instructions.
675 pub fn num_insts(&self) -> usize {
676 self.insts.len()
677 }
678
679 fn compute_clobbers(&self, regalloc: ®alloc2::Output) -> Vec<Writable<RealReg>> {
680 let mut clobbered = PRegSet::default();
681
682 // All moves are included in clobbers.
683 for (_, Edit::Move { to, .. }) in ®alloc.edits {
684 if let Some(preg) = to.as_reg() {
685 clobbered.add(preg);
686 }
687 }
688
689 for (i, range) in self.operand_ranges.iter() {
690 // Skip this instruction if not "included in clobbers" as
691 // per the MachInst. (Some backends use this to implement
692 // ABI specifics; e.g., excluding calls of the same ABI as
693 // the current function from clobbers, because by
694 // definition everything clobbered by the call can be
695 // clobbered by this function without saving as well.)
696 if !self.insts[i].is_included_in_clobbers() {
697 continue;
698 }
699
700 let operands = &self.operands[range.clone()];
701 let allocs = ®alloc.allocs[range];
702 for (operand, alloc) in operands.iter().zip(allocs.iter()) {
703 if operand.kind() == OperandKind::Def {
704 if let Some(preg) = alloc.as_reg() {
705 clobbered.add(preg);
706 }
707 }
708 }
709
710 // Also add explicitly-clobbered registers.
711 if let Some(&inst_clobbered) = self.clobbers.get(&InsnIndex::new(i)) {
712 clobbered.union_from(inst_clobbered);
713 }
714 }
715
716 clobbered
717 .into_iter()
718 .map(|preg| Writable::from_reg(RealReg::from(preg)))
719 .collect()
720 }
721
722 /// Emit the instructions to a `MachBuffer`, containing fixed-up
723 /// code and external reloc/trap/etc. records ready for use. Takes
724 /// the regalloc results as well.
725 ///
726 /// Returns the machine code itself, and optionally metadata
727 /// and/or a disassembly, as an `EmitResult`. The `VCode` itself
728 /// is consumed by the emission process.
729 pub fn emit(
730 mut self,
731 regalloc: ®alloc2::Output,
732 want_disasm: bool,
733 flags: &settings::Flags,
734 ctrl_plane: &mut ControlPlane,
735 ) -> EmitResult
736 where
737 I: VCodeInst,
738 {
739 // To write into disasm string.
740 use core::fmt::Write;
741
742 let _tt = timing::vcode_emit();
743 let mut buffer = MachBuffer::new();
744 let mut bb_starts: Vec<Option<CodeOffset>> = vec![];
745
746 // The first M MachLabels are reserved for block indices.
747 buffer.reserve_labels_for_blocks(self.num_blocks());
748
749 // Register all allocated constants with the `MachBuffer` to ensure that
750 // any references to the constants during instructions can be handled
751 // correctly.
752 buffer.register_constants(&self.constants);
753
754 // Construct the final order we emit code in: cold blocks at the end.
755 let mut final_order: SmallVec<[BlockIndex; 16]> = smallvec![];
756 let mut cold_blocks: SmallVec<[BlockIndex; 16]> = smallvec![];
757 for block in 0..self.num_blocks() {
758 let block = BlockIndex::new(block);
759 if self.block_order.is_cold(block) {
760 cold_blocks.push(block);
761 } else {
762 final_order.push(block);
763 }
764 }
765 final_order.extend(cold_blocks.clone());
766
767 // Compute/save info we need for the prologue: clobbers and
768 // number of spillslots.
769 //
770 // We clone `abi` here because we will mutate it as we
771 // generate the prologue and set other info, but we can't
772 // mutate `VCode`. The info it usually carries prior to
773 // setting clobbers is fairly minimal so this should be
774 // relatively cheap.
775 let clobbers = self.compute_clobbers(regalloc);
776 self.abi
777 .compute_frame_layout(&self.sigs, regalloc.num_spillslots, clobbers);
778
779 // Emit blocks.
780 let mut cur_srcloc = None;
781 let mut last_offset = None;
782 let mut inst_offsets = vec![];
783 let mut state = I::State::new(&self.abi, std::mem::take(ctrl_plane));
784
785 let mut disasm = String::new();
786
787 if !self.debug_value_labels.is_empty() {
788 inst_offsets.resize(self.insts.len(), NO_INST_OFFSET);
789 }
790
791 // Count edits per block ahead of time; this is needed for
792 // lookahead island emission. (We could derive it per-block
793 // with binary search in the edit list, but it's more
794 // efficient to do it in one pass here.)
795 let mut ra_edits_per_block: SmallVec<[u32; 64]> = smallvec![];
796 let mut edit_idx = 0;
797 for block in 0..self.num_blocks() {
798 let end_inst = InsnIndex::new(self.block_ranges.get(block).end);
799 let start_edit_idx = edit_idx;
800 while edit_idx < regalloc.edits.len() && regalloc.edits[edit_idx].0.inst() < end_inst {
801 edit_idx += 1;
802 }
803 let end_edit_idx = edit_idx;
804 ra_edits_per_block.push((end_edit_idx - start_edit_idx) as u32);
805 }
806
807 let is_forward_edge_cfi_enabled = self.abi.is_forward_edge_cfi_enabled();
808 let mut bb_padding = match flags.bb_padding_log2_minus_one() {
809 0 => Vec::new(),
810 n => vec![0; 1 << (n - 1)],
811 };
812 let mut total_bb_padding = 0;
813
814 for (block_order_idx, &block) in final_order.iter().enumerate() {
815 trace!("emitting block {:?}", block);
816
817 // Call the new block hook for state
818 state.on_new_block();
819
820 // Emit NOPs to align the block.
821 let new_offset = I::align_basic_block(buffer.cur_offset());
822 while new_offset > buffer.cur_offset() {
823 // Pad with NOPs up to the aligned block offset.
824 let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
825 nop.emit(&mut buffer, &self.emit_info, &mut Default::default());
826 }
827 assert_eq!(buffer.cur_offset(), new_offset);
828
829 let do_emit = |inst: &I,
830 disasm: &mut String,
831 buffer: &mut MachBuffer<I>,
832 state: &mut I::State| {
833 if want_disasm && !inst.is_args() {
834 let mut s = state.clone();
835 writeln!(disasm, " {}", inst.pretty_print_inst(&mut s)).unwrap();
836 }
837 inst.emit(buffer, &self.emit_info, state);
838 };
839
840 // Is this the first block? Emit the prologue directly if so.
841 if block == self.entry {
842 trace!(" -> entry block");
843 buffer.start_srcloc(Default::default());
844 for inst in &self.abi.gen_prologue() {
845 do_emit(&inst, &mut disasm, &mut buffer, &mut state);
846 }
847 buffer.end_srcloc();
848 }
849
850 // Now emit the regular block body.
851
852 buffer.bind_label(MachLabel::from_block(block), state.ctrl_plane_mut());
853
854 if want_disasm {
855 writeln!(&mut disasm, "block{}:", block.index()).unwrap();
856 }
857
858 if flags.machine_code_cfg_info() {
859 // Track BB starts. If we have backed up due to MachBuffer
860 // branch opts, note that the removed blocks were removed.
861 let cur_offset = buffer.cur_offset();
862 if last_offset.is_some() && cur_offset <= last_offset.unwrap() {
863 for i in (0..bb_starts.len()).rev() {
864 if bb_starts[i].is_some() && cur_offset > bb_starts[i].unwrap() {
865 break;
866 }
867 bb_starts[i] = None;
868 }
869 }
870 bb_starts.push(Some(cur_offset));
871 last_offset = Some(cur_offset);
872 }
873
874 if let Some(block_start) = I::gen_block_start(
875 self.block_order.is_indirect_branch_target(block),
876 is_forward_edge_cfi_enabled,
877 ) {
878 do_emit(&block_start, &mut disasm, &mut buffer, &mut state);
879 }
880
881 for inst_or_edit in regalloc.block_insts_and_edits(&self, block) {
882 match inst_or_edit {
883 InstOrEdit::Inst(iix) => {
884 if !self.debug_value_labels.is_empty() {
885 // If we need to produce debug info,
886 // record the offset of each instruction
887 // so that we can translate value-label
888 // ranges to machine-code offsets.
889
890 // Cold blocks violate monotonicity
891 // assumptions elsewhere (that
892 // instructions in inst-index order are in
893 // order in machine code), so we omit
894 // their offsets here. Value-label range
895 // generation below will skip empty ranges
896 // and ranges with to-offsets of zero.
897 if !self.block_order.is_cold(block) {
898 inst_offsets[iix.index()] = buffer.cur_offset();
899 }
900 }
901
902 // Update the srcloc at this point in the buffer.
903 let srcloc = self.srclocs[iix.index()];
904 if cur_srcloc != Some(srcloc) {
905 if cur_srcloc.is_some() {
906 buffer.end_srcloc();
907 }
908 buffer.start_srcloc(srcloc);
909 cur_srcloc = Some(srcloc);
910 }
911
912 // If this is a safepoint, compute a stack map
913 // and pass it to the emit state.
914 let stack_map_disasm = if self.insts[iix.index()].is_safepoint() {
915 let mut safepoint_slots: SmallVec<[SpillSlot; 8]> = smallvec![];
916 // Find the contiguous range of
917 // (progpoint, allocation) safepoint slot
918 // records in `regalloc.safepoint_slots`
919 // for this instruction index.
920 let safepoint_slots_start = regalloc
921 .safepoint_slots
922 .binary_search_by(|(progpoint, _alloc)| {
923 if progpoint.inst() >= iix {
924 std::cmp::Ordering::Greater
925 } else {
926 std::cmp::Ordering::Less
927 }
928 })
929 .unwrap_err();
930
931 for (_, alloc) in regalloc.safepoint_slots[safepoint_slots_start..]
932 .iter()
933 .take_while(|(progpoint, _)| progpoint.inst() == iix)
934 {
935 let slot = alloc.as_stack().unwrap();
936 safepoint_slots.push(slot);
937 }
938
939 let stack_map = if safepoint_slots.is_empty() {
940 None
941 } else {
942 Some(
943 self.abi
944 .spillslots_to_stack_map(&safepoint_slots[..], &state),
945 )
946 };
947
948 let (user_stack_map, user_stack_map_disasm) = {
949 // The `user_stack_maps` is keyed by reverse
950 // instruction index, so we must flip the
951 // index. We can't put this into a helper method
952 // due to borrowck issues because parts of
953 // `self` are borrowed mutably elsewhere in this
954 // function.
955 let index = iix.to_backwards_insn_index(self.num_insts());
956 let user_stack_map = self.user_stack_maps.remove(&index);
957 let user_stack_map_disasm =
958 user_stack_map.as_ref().map(|m| format!(" ; {m:?}"));
959 (user_stack_map, user_stack_map_disasm)
960 };
961
962 state.pre_safepoint(stack_map, user_stack_map);
963
964 user_stack_map_disasm
965 } else {
966 None
967 };
968
969 // If the instruction we are about to emit is
970 // a return, place an epilogue at this point
971 // (and don't emit the return; the actual
972 // epilogue will contain it).
973 if self.insts[iix.index()].is_term() == MachTerminator::Ret {
974 for inst in self.abi.gen_epilogue() {
975 do_emit(&inst, &mut disasm, &mut buffer, &mut state);
976 }
977 } else {
978 // Update the operands for this inst using the
979 // allocations from the regalloc result.
980 let mut allocs = regalloc.inst_allocs(iix).iter();
981 self.insts[iix.index()].get_operands(
982 &mut |reg: &mut Reg, constraint, _kind, _pos| {
983 let alloc = allocs
984 .next()
985 .expect("enough allocations for all operands")
986 .as_reg()
987 .expect("only register allocations, not stack allocations")
988 .into();
989
990 if let OperandConstraint::FixedReg(rreg) = constraint {
991 debug_assert_eq!(Reg::from(rreg), alloc);
992 }
993 *reg = alloc;
994 },
995 );
996 debug_assert!(allocs.next().is_none());
997
998 // Emit the instruction!
999 do_emit(
1000 &self.insts[iix.index()],
1001 &mut disasm,
1002 &mut buffer,
1003 &mut state,
1004 );
1005 if let Some(stack_map_disasm) = stack_map_disasm {
1006 disasm.push_str(&stack_map_disasm);
1007 disasm.push('\n');
1008 }
1009 }
1010 }
1011
1012 InstOrEdit::Edit(Edit::Move { from, to }) => {
1013 // Create a move/spill/reload instruction and
1014 // immediately emit it.
1015 match (from.as_reg(), to.as_reg()) {
1016 (Some(from), Some(to)) => {
1017 // Reg-to-reg move.
1018 let from_rreg = Reg::from(from);
1019 let to_rreg = Writable::from_reg(Reg::from(to));
1020 debug_assert_eq!(from.class(), to.class());
1021 let ty = I::canonical_type_for_rc(from.class());
1022 let mv = I::gen_move(to_rreg, from_rreg, ty);
1023 do_emit(&mv, &mut disasm, &mut buffer, &mut state);
1024 }
1025 (Some(from), None) => {
1026 // Spill from register to spillslot.
1027 let to = to.as_stack().unwrap();
1028 let from_rreg = RealReg::from(from);
1029 let spill = self.abi.gen_spill(to, from_rreg);
1030 do_emit(&spill, &mut disasm, &mut buffer, &mut state);
1031 }
1032 (None, Some(to)) => {
1033 // Load from spillslot to register.
1034 let from = from.as_stack().unwrap();
1035 let to_rreg = Writable::from_reg(RealReg::from(to));
1036 let reload = self.abi.gen_reload(to_rreg, from);
1037 do_emit(&reload, &mut disasm, &mut buffer, &mut state);
1038 }
1039 (None, None) => {
1040 panic!("regalloc2 should have eliminated stack-to-stack moves!");
1041 }
1042 }
1043 }
1044 }
1045 }
1046
1047 if cur_srcloc.is_some() {
1048 buffer.end_srcloc();
1049 cur_srcloc = None;
1050 }
1051
1052 // Do we need an island? Get the worst-case size of the next BB, add
1053 // it to the optional padding behind the block, and pass this to the
1054 // `MachBuffer` to determine if an island is necessary.
1055 let worst_case_next_bb = if block_order_idx < final_order.len() - 1 {
1056 let next_block = final_order[block_order_idx + 1];
1057 let next_block_range = self.block_ranges.get(next_block.index());
1058 let next_block_size = next_block_range.len() as u32;
1059 let next_block_ra_insertions = ra_edits_per_block[next_block.index()];
1060 I::worst_case_size() * (next_block_size + next_block_ra_insertions)
1061 } else {
1062 0
1063 };
1064 let padding = if bb_padding.is_empty() {
1065 0
1066 } else {
1067 bb_padding.len() as u32 + I::LabelUse::ALIGN - 1
1068 };
1069 if buffer.island_needed(padding + worst_case_next_bb) {
1070 buffer.emit_island(padding + worst_case_next_bb, ctrl_plane);
1071 }
1072
1073 // Insert padding, if configured, to stress the `MachBuffer`'s
1074 // relocation and island calculations.
1075 //
1076 // Padding can get quite large during fuzzing though so place a
1077 // total cap on it where when a per-function threshold is exceeded
1078 // the padding is turned back down to zero. This avoids a small-ish
1079 // test case generating a GB+ memory footprint in Cranelift for
1080 // example.
1081 if !bb_padding.is_empty() {
1082 buffer.put_data(&bb_padding);
1083 buffer.align_to(I::LabelUse::ALIGN);
1084 total_bb_padding += bb_padding.len();
1085 if total_bb_padding > (150 << 20) {
1086 bb_padding = Vec::new();
1087 }
1088 }
1089 }
1090
1091 debug_assert!(
1092 self.user_stack_maps.is_empty(),
1093 "any stack maps should have been consumed by instruction emission, still have: {:#?}",
1094 self.user_stack_maps,
1095 );
1096
1097 // Do any optimizations on branches at tail of buffer, as if we had
1098 // bound one last label.
1099 buffer.optimize_branches(ctrl_plane);
1100
1101 // emission state is not needed anymore, move control plane back out
1102 *ctrl_plane = state.take_ctrl_plane();
1103
1104 let func_body_len = buffer.cur_offset();
1105
1106 // Create `bb_edges` and final (filtered) `bb_starts`.
1107 let mut bb_edges = vec![];
1108 let mut bb_offsets = vec![];
1109 if flags.machine_code_cfg_info() {
1110 for block in 0..self.num_blocks() {
1111 if bb_starts[block].is_none() {
1112 // Block was deleted by MachBuffer; skip.
1113 continue;
1114 }
1115 let from = bb_starts[block].unwrap();
1116
1117 bb_offsets.push(from);
1118 // Resolve each `succ` label and add edges.
1119 let succs = self.block_succs(BlockIndex::new(block));
1120 for &succ in succs.iter() {
1121 let to = buffer.resolve_label_offset(MachLabel::from_block(succ));
1122 bb_edges.push((from, to));
1123 }
1124 }
1125 }
1126
1127 self.monotonize_inst_offsets(&mut inst_offsets[..], func_body_len);
1128 let value_labels_ranges =
1129 self.compute_value_labels_ranges(regalloc, &inst_offsets[..], func_body_len);
1130 let frame_size = self.abi.frame_size();
1131
1132 EmitResult {
1133 buffer: buffer.finish(&self.constants, ctrl_plane),
1134 bb_offsets,
1135 bb_edges,
1136 func_body_len,
1137 disasm: if want_disasm { Some(disasm) } else { None },
1138 sized_stackslot_offsets: self.abi.sized_stackslot_offsets().clone(),
1139 dynamic_stackslot_offsets: self.abi.dynamic_stackslot_offsets().clone(),
1140 value_labels_ranges,
1141 frame_size,
1142 }
1143 }
1144
1145 fn monotonize_inst_offsets(&self, inst_offsets: &mut [CodeOffset], func_body_len: u32) {
1146 if self.debug_value_labels.is_empty() {
1147 return;
1148 }
1149
1150 // During emission, branch removal can make offsets of instructions incorrect.
1151 // Consider the following sequence: [insi][jmp0][jmp1][jmp2][insj]
1152 // It will be recorded as (say): [30] [34] [38] [42] [<would be 46>]
1153 // When the jumps get removed we are left with (in "inst_offsets"):
1154 // [insi][jmp0][jmp1][jmp2][insj][...]
1155 // [30] [34] [38] [42] [34]
1156 // Which violates the monotonicity invariant. This method sets offsets of these
1157 // removed instructions such as to make them appear zero-sized:
1158 // [insi][jmp0][jmp1][jmp2][insj][...]
1159 // [30] [34] [34] [34] [34]
1160 //
1161 let mut next_offset = func_body_len;
1162 for inst_index in (0..(inst_offsets.len() - 1)).rev() {
1163 let inst_offset = inst_offsets[inst_index];
1164
1165 // Not all instructions get their offsets recorded.
1166 if inst_offset == NO_INST_OFFSET {
1167 continue;
1168 }
1169
1170 if inst_offset > next_offset {
1171 trace!(
1172 "Fixing code offset of the removed Inst {}: {} -> {}",
1173 inst_index,
1174 inst_offset,
1175 next_offset
1176 );
1177 inst_offsets[inst_index] = next_offset;
1178 continue;
1179 }
1180
1181 next_offset = inst_offset;
1182 }
1183 }
1184
1185 fn compute_value_labels_ranges(
1186 &self,
1187 regalloc: ®alloc2::Output,
1188 inst_offsets: &[CodeOffset],
1189 func_body_len: u32,
1190 ) -> ValueLabelsRanges {
1191 if self.debug_value_labels.is_empty() {
1192 return ValueLabelsRanges::default();
1193 }
1194
1195 let mut value_labels_ranges: ValueLabelsRanges = HashMap::new();
1196 for &(label, from, to, alloc) in ®alloc.debug_locations {
1197 let ranges = value_labels_ranges
1198 .entry(ValueLabel::from_u32(label))
1199 .or_insert_with(|| vec![]);
1200 let from_offset = inst_offsets[from.inst().index()];
1201 let to_offset = if to.inst().index() == inst_offsets.len() {
1202 func_body_len
1203 } else {
1204 inst_offsets[to.inst().index()]
1205 };
1206
1207 // Empty ranges or unavailable offsets can happen
1208 // due to cold blocks and branch removal (see above).
1209 if from_offset == NO_INST_OFFSET
1210 || to_offset == NO_INST_OFFSET
1211 || from_offset == to_offset
1212 {
1213 continue;
1214 }
1215
1216 let loc = if let Some(preg) = alloc.as_reg() {
1217 LabelValueLoc::Reg(Reg::from(preg))
1218 } else {
1219 let slot = alloc.as_stack().unwrap();
1220 let slot_offset = self.abi.get_spillslot_offset(slot);
1221 let slot_base_to_caller_sp_offset = self.abi.slot_base_to_caller_sp_offset();
1222 let caller_sp_to_cfa_offset =
1223 crate::isa::unwind::systemv::caller_sp_to_cfa_offset();
1224 // NOTE: this is a negative offset because it's relative to the caller's SP
1225 let cfa_to_sp_offset =
1226 -((slot_base_to_caller_sp_offset + caller_sp_to_cfa_offset) as i64);
1227 LabelValueLoc::CFAOffset(cfa_to_sp_offset + slot_offset)
1228 };
1229
1230 // ValueLocRanges are recorded by *instruction-end
1231 // offset*. `from_offset` is the *start* of the
1232 // instruction; that is the same as the end of another
1233 // instruction, so we only want to begin coverage once
1234 // we are past the previous instruction's end.
1235 let start = from_offset + 1;
1236
1237 // Likewise, `end` is exclusive, but we want to
1238 // *include* the end of the last
1239 // instruction. `to_offset` is the start of the
1240 // `to`-instruction, which is the exclusive end, i.e.,
1241 // the first instruction not covered. That
1242 // instruction's start is the same as the end of the
1243 // last instruction that is included, so we go one
1244 // byte further to be sure to include it.
1245 let end = to_offset + 1;
1246
1247 // Coalesce adjacent ranges that for the same location
1248 // to minimize output size here and for the consumers.
1249 if let Some(last_loc_range) = ranges.last_mut() {
1250 if last_loc_range.loc == loc && last_loc_range.end == start {
1251 trace!(
1252 "Extending debug range for VL{} in {:?} to {}",
1253 label,
1254 loc,
1255 end
1256 );
1257 last_loc_range.end = end;
1258 continue;
1259 }
1260 }
1261
1262 trace!(
1263 "Recording debug range for VL{} in {:?}: [Inst {}..Inst {}) [{}..{})",
1264 label,
1265 loc,
1266 from.inst().index(),
1267 to.inst().index(),
1268 start,
1269 end
1270 );
1271
1272 ranges.push(ValueLocRange { loc, start, end });
1273 }
1274
1275 value_labels_ranges
1276 }
1277
1278 /// Get the IR block for a BlockIndex, if one exists.
1279 pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
1280 self.block_order.lowered_order()[block.index()].orig_block()
1281 }
1282
1283 /// Get the type of a VReg.
1284 pub fn vreg_type(&self, vreg: VReg) -> Type {
1285 self.vreg_types[vreg.vreg()]
1286 }
1287
1288 /// Get the fact, if any, for a given VReg.
1289 pub fn vreg_fact(&self, vreg: VReg) -> Option<&Fact> {
1290 self.facts[vreg.vreg()].as_ref()
1291 }
1292
1293 /// Set the fact for a given VReg.
1294 pub fn set_vreg_fact(&mut self, vreg: VReg, fact: Fact) {
1295 trace!("set fact on {}: {:?}", vreg, fact);
1296 self.facts[vreg.vreg()] = Some(fact);
1297 }
1298
1299 /// Does a given instruction define any facts?
1300 pub fn inst_defines_facts(&self, inst: InsnIndex) -> bool {
1301 self.inst_operands(inst)
1302 .iter()
1303 .filter(|o| o.kind() == OperandKind::Def)
1304 .map(|o| o.vreg())
1305 .any(|vreg| self.facts[vreg.vreg()].is_some())
1306 }
1307
1308 /// Get the user stack map associated with the given forward instruction index.
1309 pub fn get_user_stack_map(&self, inst: InsnIndex) -> Option<&ir::UserStackMap> {
1310 let index = inst.to_backwards_insn_index(self.num_insts());
1311 self.user_stack_maps.get(&index)
1312 }
1313}
1314
1315impl<I: VCodeInst> std::ops::Index<InsnIndex> for VCode<I> {
1316 type Output = I;
1317 fn index(&self, idx: InsnIndex) -> &Self::Output {
1318 &self.insts[idx.index()]
1319 }
1320}
1321
1322impl<I: VCodeInst> RegallocFunction for VCode<I> {
1323 fn num_insts(&self) -> usize {
1324 self.insts.len()
1325 }
1326
1327 fn num_blocks(&self) -> usize {
1328 self.block_ranges.len()
1329 }
1330
1331 fn entry_block(&self) -> BlockIndex {
1332 self.entry
1333 }
1334
1335 fn block_insns(&self, block: BlockIndex) -> InstRange {
1336 let range = self.block_ranges.get(block.index());
1337 InstRange::forward(InsnIndex::new(range.start), InsnIndex::new(range.end))
1338 }
1339
1340 fn block_succs(&self, block: BlockIndex) -> &[BlockIndex] {
1341 let range = self.block_succ_range.get(block.index());
1342 &self.block_succs[range]
1343 }
1344
1345 fn block_preds(&self, block: BlockIndex) -> &[BlockIndex] {
1346 let range = self.block_pred_range.get(block.index());
1347 &self.block_preds[range]
1348 }
1349
1350 fn block_params(&self, block: BlockIndex) -> &[VReg] {
1351 // As a special case we don't return block params for the entry block, as all the arguments
1352 // will be defined by the `Inst::Args` instruction.
1353 if block == self.entry {
1354 return &[];
1355 }
1356
1357 let range = self.block_params_range.get(block.index());
1358 &self.block_params[range]
1359 }
1360
1361 fn branch_blockparams(&self, block: BlockIndex, _insn: InsnIndex, succ_idx: usize) -> &[VReg] {
1362 let succ_range = self.branch_block_arg_succ_range.get(block.index());
1363 debug_assert!(succ_idx < succ_range.len());
1364 let branch_block_args = self.branch_block_arg_range.get(succ_range.start + succ_idx);
1365 &self.branch_block_args[branch_block_args]
1366 }
1367
1368 fn is_ret(&self, insn: InsnIndex) -> bool {
1369 match self.insts[insn.index()].is_term() {
1370 // We treat blocks terminated by an unconditional trap like a return for regalloc.
1371 MachTerminator::None => self.insts[insn.index()].is_trap(),
1372 MachTerminator::Ret | MachTerminator::RetCall => true,
1373 MachTerminator::Uncond | MachTerminator::Cond | MachTerminator::Indirect => false,
1374 }
1375 }
1376
1377 fn is_branch(&self, insn: InsnIndex) -> bool {
1378 match self.insts[insn.index()].is_term() {
1379 MachTerminator::Cond | MachTerminator::Uncond | MachTerminator::Indirect => true,
1380 _ => false,
1381 }
1382 }
1383
1384 fn requires_refs_on_stack(&self, insn: InsnIndex) -> bool {
1385 self.insts[insn.index()].is_safepoint()
1386 }
1387
1388 fn inst_operands(&self, insn: InsnIndex) -> &[Operand] {
1389 let range = self.operand_ranges.get(insn.index());
1390 &self.operands[range]
1391 }
1392
1393 fn inst_clobbers(&self, insn: InsnIndex) -> PRegSet {
1394 self.clobbers.get(&insn).cloned().unwrap_or_default()
1395 }
1396
1397 fn num_vregs(&self) -> usize {
1398 self.vreg_types.len()
1399 }
1400
1401 fn reftype_vregs(&self) -> &[VReg] {
1402 &self.reftyped_vregs
1403 }
1404
1405 fn debug_value_labels(&self) -> &[(VReg, InsnIndex, InsnIndex, u32)] {
1406 &self.debug_value_labels
1407 }
1408
1409 fn spillslot_size(&self, regclass: RegClass) -> usize {
1410 self.abi.get_spillslot_size(regclass) as usize
1411 }
1412
1413 fn allow_multiple_vreg_defs(&self) -> bool {
1414 // At least the s390x backend requires this, because the
1415 // `Loop` pseudo-instruction aggregates all Operands so pinned
1416 // vregs (RealRegs) may occur more than once.
1417 true
1418 }
1419}
1420
1421impl<I: VCodeInst> Debug for VRegAllocator<I> {
1422 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1423 writeln!(f, "VRegAllocator {{")?;
1424
1425 let mut alias_keys = self.vreg_aliases.keys().cloned().collect::<Vec<_>>();
1426 alias_keys.sort_unstable();
1427 for key in alias_keys {
1428 let dest = self.vreg_aliases.get(&key).unwrap();
1429 writeln!(f, " {:?} := {:?}", Reg::from(key), Reg::from(*dest))?;
1430 }
1431
1432 for (vreg, fact) in self.facts.iter().enumerate() {
1433 if let Some(fact) = fact {
1434 writeln!(f, " v{} ! {}", vreg, fact)?;
1435 }
1436 }
1437
1438 writeln!(f, "}}")
1439 }
1440}
1441
1442impl<I: VCodeInst> fmt::Debug for VCode<I> {
1443 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1444 writeln!(f, "VCode {{")?;
1445 writeln!(f, " Entry block: {}", self.entry.index())?;
1446
1447 let mut state = Default::default();
1448
1449 for block in 0..self.num_blocks() {
1450 let block = BlockIndex::new(block);
1451 writeln!(
1452 f,
1453 "Block {}({:?}):",
1454 block.index(),
1455 self.block_params(block)
1456 )?;
1457 if let Some(bb) = self.bindex_to_bb(block) {
1458 writeln!(f, " (original IR block: {})", bb)?;
1459 }
1460 for (succ_idx, succ) in self.block_succs(block).iter().enumerate() {
1461 writeln!(
1462 f,
1463 " (successor: Block {}({:?}))",
1464 succ.index(),
1465 self.branch_blockparams(block, InsnIndex::new(0) /* dummy */, succ_idx)
1466 )?;
1467 }
1468 for inst in self.block_ranges.get(block.index()) {
1469 writeln!(
1470 f,
1471 " Inst {}: {}",
1472 inst,
1473 self.insts[inst].pretty_print_inst(&mut state)
1474 )?;
1475 if !self.operands.is_empty() {
1476 for operand in self.inst_operands(InsnIndex::new(inst)) {
1477 if operand.kind() == OperandKind::Def {
1478 if let Some(fact) = &self.facts[operand.vreg().vreg()] {
1479 writeln!(f, " v{} ! {}", operand.vreg().vreg(), fact)?;
1480 }
1481 }
1482 }
1483 }
1484 if let Some(user_stack_map) = self.get_user_stack_map(InsnIndex::new(inst)) {
1485 writeln!(f, " {user_stack_map:?}")?;
1486 }
1487 }
1488 }
1489
1490 writeln!(f, "}}")?;
1491 Ok(())
1492 }
1493}
1494
1495/// This structure manages VReg allocation during the lifetime of the VCodeBuilder.
1496pub struct VRegAllocator<I> {
1497 /// VReg IR-level types.
1498 vreg_types: Vec<Type>,
1499
1500 /// Reference-typed `regalloc2::VReg`s. The regalloc requires
1501 /// these in a dense slice (as opposed to querying the
1502 /// reftype-status of each vreg) for efficient iteration.
1503 reftyped_vregs: Vec<VReg>,
1504
1505 /// VReg aliases. When the final VCode is built we rewrite all
1506 /// uses of the keys in this table to their replacement values.
1507 ///
1508 /// We use these aliases to rename an instruction's expected
1509 /// result vregs to the returned vregs from lowering, which are
1510 /// usually freshly-allocated temps.
1511 vreg_aliases: FxHashMap<regalloc2::VReg, regalloc2::VReg>,
1512
1513 /// A deferred error, to be bubbled up to the top level of the
1514 /// lowering algorithm. We take this approach because we cannot
1515 /// currently propagate a `Result` upward through ISLE code (the
1516 /// lowering rules) or some ABI code.
1517 deferred_error: Option<CodegenError>,
1518
1519 /// Facts on VRegs, for proof-carrying code.
1520 facts: Vec<Option<Fact>>,
1521
1522 /// The type of instruction that this allocator makes registers for.
1523 _inst: core::marker::PhantomData<I>,
1524}
1525
1526impl<I: VCodeInst> VRegAllocator<I> {
1527 /// Make a new VRegAllocator.
1528 pub fn with_capacity(capacity: usize) -> Self {
1529 let capacity = first_user_vreg_index() + capacity;
1530 let mut vreg_types = Vec::with_capacity(capacity);
1531 vreg_types.resize(first_user_vreg_index(), types::INVALID);
1532 Self {
1533 vreg_types,
1534 reftyped_vregs: vec![],
1535 vreg_aliases: FxHashMap::with_capacity_and_hasher(capacity, Default::default()),
1536 deferred_error: None,
1537 facts: Vec::with_capacity(capacity),
1538 _inst: core::marker::PhantomData::default(),
1539 }
1540 }
1541
1542 /// Allocate a fresh ValueRegs.
1543 pub fn alloc(&mut self, ty: Type) -> CodegenResult<ValueRegs<Reg>> {
1544 if self.deferred_error.is_some() {
1545 return Err(CodegenError::CodeTooLarge);
1546 }
1547 let v = self.vreg_types.len();
1548 let (regclasses, tys) = I::rc_for_type(ty)?;
1549 if v + regclasses.len() >= VReg::MAX {
1550 return Err(CodegenError::CodeTooLarge);
1551 }
1552
1553 let regs: ValueRegs<Reg> = match regclasses {
1554 &[rc0] => ValueRegs::one(VReg::new(v, rc0).into()),
1555 &[rc0, rc1] => ValueRegs::two(VReg::new(v, rc0).into(), VReg::new(v + 1, rc1).into()),
1556 // We can extend this if/when we support 32-bit targets; e.g.,
1557 // an i128 on a 32-bit machine will need up to four machine regs
1558 // for a `Value`.
1559 _ => panic!("Value must reside in 1 or 2 registers"),
1560 };
1561 for (®_ty, ®) in tys.iter().zip(regs.regs().iter()) {
1562 let vreg = reg.to_virtual_reg().unwrap();
1563 debug_assert_eq!(self.vreg_types.len(), vreg.index());
1564 self.vreg_types.push(reg_ty);
1565 if is_reftype(reg_ty) {
1566 self.reftyped_vregs.push(vreg.into());
1567 }
1568 }
1569
1570 // Create empty facts for each allocated vreg.
1571 self.facts.resize(self.vreg_types.len(), None);
1572
1573 Ok(regs)
1574 }
1575
1576 /// Allocate a fresh ValueRegs, deferring any out-of-vregs
1577 /// errors. This is useful in places where we cannot bubble a
1578 /// `CodegenResult` upward easily, and which are known to be
1579 /// invoked from within the lowering loop that checks the deferred
1580 /// error status below.
1581 pub fn alloc_with_deferred_error(&mut self, ty: Type) -> ValueRegs<Reg> {
1582 match self.alloc(ty) {
1583 Ok(x) => x,
1584 Err(e) => {
1585 self.deferred_error = Some(e);
1586 self.bogus_for_deferred_error(ty)
1587 }
1588 }
1589 }
1590
1591 /// Take any deferred error that was accumulated by `alloc_with_deferred_error`.
1592 pub fn take_deferred_error(&mut self) -> Option<CodegenError> {
1593 self.deferred_error.take()
1594 }
1595
1596 /// Produce an bogus VReg placeholder with the proper number of
1597 /// registers for the given type. This is meant to be used with
1598 /// deferred allocation errors (see `Lower::alloc_tmp()`).
1599 fn bogus_for_deferred_error(&self, ty: Type) -> ValueRegs<Reg> {
1600 let (regclasses, _tys) = I::rc_for_type(ty).expect("must have valid type");
1601 match regclasses {
1602 &[rc0] => ValueRegs::one(VReg::new(0, rc0).into()),
1603 &[rc0, rc1] => ValueRegs::two(VReg::new(0, rc0).into(), VReg::new(1, rc1).into()),
1604 _ => panic!("Value must reside in 1 or 2 registers"),
1605 }
1606 }
1607
1608 /// Rewrite any mention of `from` into `to`.
1609 pub fn set_vreg_alias(&mut self, from: Reg, to: Reg) {
1610 let from = from.into();
1611 let resolved_to = self.resolve_vreg_alias(to.into());
1612 // Disallow cycles (see below).
1613 assert_ne!(resolved_to, from);
1614
1615 // Maintain the invariant that PCC facts only exist on vregs
1616 // which aren't aliases. We want to preserve whatever was
1617 // stated about the vreg before its producer was lowered.
1618 if let Some(fact) = self.facts[from.vreg()].take() {
1619 self.set_fact(resolved_to, fact);
1620 }
1621
1622 let old_alias = self.vreg_aliases.insert(from, resolved_to);
1623 debug_assert_eq!(old_alias, None);
1624 }
1625
1626 fn resolve_vreg_alias(&self, mut vreg: regalloc2::VReg) -> regalloc2::VReg {
1627 // We prevent cycles from existing by resolving targets of
1628 // aliases eagerly before setting them. If the target resolves
1629 // to the origin of the alias, then a cycle would be created
1630 // and the alias is disallowed. Because of the structure of
1631 // SSA code (one instruction can refer to another's defs but
1632 // not vice-versa, except indirectly through
1633 // phis/blockparams), cycles should not occur as we use
1634 // aliases to redirect vregs to the temps that actually define
1635 // them.
1636 while let Some(to) = self.vreg_aliases.get(&vreg) {
1637 vreg = *to;
1638 }
1639 vreg
1640 }
1641
1642 #[inline]
1643 fn debug_assert_no_vreg_aliases(&self, mut list: impl Iterator<Item = VReg>) {
1644 debug_assert!(list.all(|vreg| !self.vreg_aliases.contains_key(&vreg)));
1645 }
1646
1647 /// Set the proof-carrying code fact on a given virtual register.
1648 ///
1649 /// Returns the old fact, if any (only one fact can be stored).
1650 fn set_fact(&mut self, vreg: regalloc2::VReg, fact: Fact) -> Option<Fact> {
1651 trace!("vreg {:?} has fact: {:?}", vreg, fact);
1652 debug_assert!(!self.vreg_aliases.contains_key(&vreg));
1653 self.facts[vreg.vreg()].replace(fact)
1654 }
1655
1656 /// Set a fact only if one doesn't already exist.
1657 pub fn set_fact_if_missing(&mut self, vreg: VirtualReg, fact: Fact) {
1658 let vreg = self.resolve_vreg_alias(vreg.into());
1659 if self.facts[vreg.vreg()].is_none() {
1660 self.set_fact(vreg, fact);
1661 }
1662 }
1663
1664 /// Allocate a fresh ValueRegs, with a given fact to apply if
1665 /// the value fits in one VReg.
1666 pub fn alloc_with_maybe_fact(
1667 &mut self,
1668 ty: Type,
1669 fact: Option<Fact>,
1670 ) -> CodegenResult<ValueRegs<Reg>> {
1671 let result = self.alloc(ty)?;
1672
1673 // Ensure that we don't lose a fact on a value that splits
1674 // into multiple VRegs.
1675 assert!(result.len() == 1 || fact.is_none());
1676 if let Some(fact) = fact {
1677 self.set_fact(result.regs()[0].into(), fact);
1678 }
1679
1680 Ok(result)
1681 }
1682}
1683
1684/// This structure tracks the large constants used in VCode that will be emitted separately by the
1685/// [MachBuffer].
1686///
1687/// First, during the lowering phase, constants are inserted using
1688/// [VCodeConstants.insert]; an intermediate handle, `VCodeConstant`, tracks what constants are
1689/// used in this phase. Some deduplication is performed, when possible, as constant
1690/// values are inserted.
1691///
1692/// Secondly, during the emission phase, the [MachBuffer] assigns [MachLabel]s for each of the
1693/// constants so that instructions can refer to the value's memory location. The [MachBuffer]
1694/// then writes the constant values to the buffer.
1695#[derive(Default)]
1696pub struct VCodeConstants {
1697 constants: PrimaryMap<VCodeConstant, VCodeConstantData>,
1698 pool_uses: HashMap<Constant, VCodeConstant>,
1699 well_known_uses: HashMap<*const [u8], VCodeConstant>,
1700 u64s: HashMap<[u8; 8], VCodeConstant>,
1701}
1702impl VCodeConstants {
1703 /// Initialize the structure with the expected number of constants.
1704 pub fn with_capacity(expected_num_constants: usize) -> Self {
1705 Self {
1706 constants: PrimaryMap::with_capacity(expected_num_constants),
1707 pool_uses: HashMap::with_capacity(expected_num_constants),
1708 well_known_uses: HashMap::new(),
1709 u64s: HashMap::new(),
1710 }
1711 }
1712
1713 /// Insert a constant; using this method indicates that a constant value will be used and thus
1714 /// will be emitted to the `MachBuffer`. The current implementation can deduplicate constants
1715 /// that are [VCodeConstantData::Pool] or [VCodeConstantData::WellKnown] but not
1716 /// [VCodeConstantData::Generated].
1717 pub fn insert(&mut self, data: VCodeConstantData) -> VCodeConstant {
1718 match data {
1719 VCodeConstantData::Generated(_) => self.constants.push(data),
1720 VCodeConstantData::Pool(constant, _) => match self.pool_uses.get(&constant) {
1721 None => {
1722 let vcode_constant = self.constants.push(data);
1723 self.pool_uses.insert(constant, vcode_constant);
1724 vcode_constant
1725 }
1726 Some(&vcode_constant) => vcode_constant,
1727 },
1728 VCodeConstantData::WellKnown(data_ref) => {
1729 match self.well_known_uses.entry(data_ref as *const [u8]) {
1730 Entry::Vacant(v) => {
1731 let vcode_constant = self.constants.push(data);
1732 v.insert(vcode_constant);
1733 vcode_constant
1734 }
1735 Entry::Occupied(o) => *o.get(),
1736 }
1737 }
1738 VCodeConstantData::U64(value) => match self.u64s.entry(value) {
1739 Entry::Vacant(v) => {
1740 let vcode_constant = self.constants.push(data);
1741 v.insert(vcode_constant);
1742 vcode_constant
1743 }
1744 Entry::Occupied(o) => *o.get(),
1745 },
1746 }
1747 }
1748
1749 /// Return the number of constants inserted.
1750 pub fn len(&self) -> usize {
1751 self.constants.len()
1752 }
1753
1754 /// Iterate over the `VCodeConstant` keys inserted in this structure.
1755 pub fn keys(&self) -> Keys<VCodeConstant> {
1756 self.constants.keys()
1757 }
1758
1759 /// Iterate over the `VCodeConstant` keys and the data (as a byte slice) inserted in this
1760 /// structure.
1761 pub fn iter(&self) -> impl Iterator<Item = (VCodeConstant, &VCodeConstantData)> {
1762 self.constants.iter()
1763 }
1764
1765 /// Returns the data associated with the specified constant.
1766 pub fn get(&self, c: VCodeConstant) -> &VCodeConstantData {
1767 &self.constants[c]
1768 }
1769
1770 /// Checks if the given [VCodeConstantData] is registered as
1771 /// used by the pool.
1772 pub fn pool_uses(&self, constant: &VCodeConstantData) -> bool {
1773 match constant {
1774 VCodeConstantData::Pool(c, _) => self.pool_uses.contains_key(c),
1775 _ => false,
1776 }
1777 }
1778}
1779
1780/// A use of a constant by one or more VCode instructions; see [VCodeConstants].
1781#[derive(Clone, Copy, Debug, PartialEq, Eq)]
1782pub struct VCodeConstant(u32);
1783entity_impl!(VCodeConstant);
1784
1785/// Identify the different types of constant that can be inserted into [VCodeConstants]. Tracking
1786/// these separately instead of as raw byte buffers allows us to avoid some duplication.
1787pub enum VCodeConstantData {
1788 /// A constant already present in the Cranelift IR
1789 /// [ConstantPool](crate::ir::constant::ConstantPool).
1790 Pool(Constant, ConstantData),
1791 /// A reference to a well-known constant value that is statically encoded within the compiler.
1792 WellKnown(&'static [u8]),
1793 /// A constant value generated during lowering; the value may depend on the instruction context
1794 /// which makes it difficult to de-duplicate--if possible, use other variants.
1795 Generated(ConstantData),
1796 /// A constant of at most 64 bits. These are deduplicated as
1797 /// well. Stored as a fixed-size array of `u8` so that we do not
1798 /// encounter endianness problems when cross-compiling.
1799 U64([u8; 8]),
1800}
1801impl VCodeConstantData {
1802 /// Retrieve the constant data as a byte slice.
1803 pub fn as_slice(&self) -> &[u8] {
1804 match self {
1805 VCodeConstantData::Pool(_, d) | VCodeConstantData::Generated(d) => d.as_slice(),
1806 VCodeConstantData::WellKnown(d) => d,
1807 VCodeConstantData::U64(value) => &value[..],
1808 }
1809 }
1810
1811 /// Calculate the alignment of the constant data.
1812 pub fn alignment(&self) -> u32 {
1813 if self.as_slice().len() <= 8 {
1814 8
1815 } else {
1816 16
1817 }
1818 }
1819}
1820
1821#[cfg(test)]
1822mod test {
1823 use super::*;
1824 use std::mem::size_of;
1825
1826 #[test]
1827 fn size_of_constant_structs() {
1828 assert_eq!(size_of::<Constant>(), 4);
1829 assert_eq!(size_of::<VCodeConstant>(), 4);
1830 assert_eq!(size_of::<ConstantData>(), 24);
1831 assert_eq!(size_of::<VCodeConstantData>(), 32);
1832 assert_eq!(
1833 size_of::<PrimaryMap<VCodeConstant, VCodeConstantData>>(),
1834 24
1835 );
1836 // TODO The VCodeConstants structure's memory size could be further optimized.
1837 // With certain versions of Rust, each `HashMap` in `VCodeConstants` occupied at
1838 // least 48 bytes, making an empty `VCodeConstants` cost 120 bytes.
1839 }
1840}