cranelift_codegen/machinst/
lower.rs

1//! This module implements lowering (instruction selection) from Cranelift IR
2//! to machine instructions with virtual registers. This is *almost* the final
3//! machine code, except for register allocation.
4
5// TODO: separate the IR-query core of `Lower` from the lowering logic built on
6// top of it, e.g. the side-effect/coloring analysis and the scan support.
7
8use crate::entity::SecondaryMap;
9use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
10use crate::ir::pcc::{Fact, FactContext, PccError, PccResult};
11use crate::ir::{
12    ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
13    GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags, RelSourceLoc, Type,
14    Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
15};
16use crate::machinst::{
17    writable_value_regs, BackwardsInsnIndex, BlockIndex, BlockLoweringOrder, Callee, InsnIndex,
18    LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData,
19    VCodeConstants, VCodeInst, ValueRegs, Writable,
20};
21use crate::settings::Flags;
22use crate::{trace, CodegenResult};
23use alloc::vec::Vec;
24use cranelift_control::ControlPlane;
25use rustc_hash::{FxHashMap, FxHashSet};
26use smallvec::{smallvec, SmallVec};
27use std::fmt::Debug;
28
29use super::{VCodeBuildDirection, VRegAllocator};
30
31/// A vector of ValueRegs, used to represent the outputs of an instruction.
32pub type InstOutput = SmallVec<[ValueRegs<Reg>; 2]>;
33
34/// An "instruction color" partitions CLIF instructions by side-effecting ops.
35/// All instructions with the same "color" are guaranteed not to be separated by
36/// any side-effecting op (for this purpose, loads are also considered
37/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
38/// furthermore, it is guaranteed that for any two instructions A and B such
39/// that color(A) == color(B), either A dominates B and B postdominates A, or
40/// vice-versa. (For now, in practice, only ops in the same basic block can ever
41/// have the same color, trivially providing the second condition.) Intuitively,
42/// this means that the ops of the same color must always execute "together", as
43/// part of one atomic contiguous section of the dynamic execution trace, and
44/// they can be freely permuted (modulo true dataflow dependencies) without
45/// affecting program behavior.
46#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
47struct InstColor(u32);
48impl InstColor {
49    fn new(n: u32) -> InstColor {
50        InstColor(n)
51    }
52
53    /// Get an arbitrary index representing this color. The index is unique
54    /// *within a single function compilation*, but indices may be reused across
55    /// functions.
56    pub fn get(self) -> u32 {
57        self.0
58    }
59}
60
61/// A representation of all of the ways in which a value is available, aside
62/// from as a direct register.
63///
64/// - An instruction, if it would be allowed to occur at the current location
65///   instead (see [Lower::get_input_as_source_or_const()] for more details).
66///
67/// - A constant, if the value is known to be a constant.
68#[derive(Clone, Copy, Debug)]
69pub struct NonRegInput {
70    /// An instruction produces this value (as the given output), and its
71    /// computation (and side-effect if applicable) could occur at the
72    /// current instruction's location instead.
73    ///
74    /// If this instruction's operation is merged into the current instruction,
75    /// the backend must call [Lower::sink_inst()].
76    ///
77    /// This enum indicates whether this use of the source instruction
78    /// is unique or not.
79    pub inst: InputSourceInst,
80    /// The value is a known constant.
81    pub constant: Option<u64>,
82}
83
84/// When examining an input to an instruction, this enum provides one
85/// of several options: there is or isn't a single instruction (that
86/// we can see and merge with) that produces that input's value, and
87/// we are or aren't the single user of that instruction.
88#[derive(Clone, Copy, Debug)]
89pub enum InputSourceInst {
90    /// The input in question is the single, unique use of the given
91    /// instruction and output index, and it can be sunk to the
92    /// location of this input.
93    UniqueUse(Inst, usize),
94    /// The input in question is one of multiple uses of the given
95    /// instruction. It can still be sunk to the location of this
96    /// input.
97    Use(Inst, usize),
98    /// We cannot determine which instruction produced the input, or
99    /// it is one of several instructions (e.g., due to a control-flow
100    /// merge and blockparam), or the source instruction cannot be
101    /// allowed to sink to the current location due to side-effects.
102    None,
103}
104
105impl InputSourceInst {
106    /// Get the instruction and output index for this source, whether
107    /// we are its single or one of many users.
108    pub fn as_inst(&self) -> Option<(Inst, usize)> {
109        match self {
110            &InputSourceInst::UniqueUse(inst, output_idx)
111            | &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
112            &InputSourceInst::None => None,
113        }
114    }
115}
116
117/// A machine backend.
118pub trait LowerBackend {
119    /// The machine instruction type.
120    type MInst: VCodeInst;
121
122    /// Lower a single instruction.
123    ///
124    /// For a branch, this function should not generate the actual branch
125    /// instruction. However, it must force any values it needs for the branch
126    /// edge (block-param actuals) into registers, because the actual branch
127    /// generation (`lower_branch()`) happens *after* any possible merged
128    /// out-edge.
129    ///
130    /// Returns `None` if no lowering for the instruction was found.
131    fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> Option<InstOutput>;
132
133    /// Lower a block-terminating group of branches (which together can be seen
134    /// as one N-way branch), given a vcode MachLabel for each target.
135    ///
136    /// Returns `None` if no lowering for the branch was found.
137    fn lower_branch(
138        &self,
139        ctx: &mut Lower<Self::MInst>,
140        inst: Inst,
141        targets: &[MachLabel],
142    ) -> Option<()>;
143
144    /// A bit of a hack: give a fixed register that always holds the result of a
145    /// `get_pinned_reg` instruction, if known.  This allows elision of moves
146    /// into the associated vreg, instead using the real reg directly.
147    fn maybe_pinned_reg(&self) -> Option<Reg> {
148        None
149    }
150
151    /// The type of state carried between `check_fact` invocations.
152    type FactFlowState: Default + Clone + Debug;
153
154    /// Check any facts about an instruction, given VCode with facts
155    /// on VRegs. Takes mutable `VCode` so that it can propagate some
156    /// kinds of facts automatically.
157    fn check_fact(
158        &self,
159        _ctx: &FactContext<'_>,
160        _vcode: &mut VCode<Self::MInst>,
161        _inst: InsnIndex,
162        _state: &mut Self::FactFlowState,
163    ) -> PccResult<()> {
164        Err(PccError::UnimplementedBackend)
165    }
166}
167
168/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
169/// from original Inst to MachInsts.
170pub struct Lower<'func, I: VCodeInst> {
171    /// The function to lower.
172    f: &'func Function,
173
174    /// Lowered machine instructions.
175    vcode: VCodeBuilder<I>,
176
177    /// VReg allocation context, given to the vcode field at build time to finalize the vcode.
178    vregs: VRegAllocator<I>,
179
180    /// Mapping from `Value` (SSA value in IR) to virtual register.
181    value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
182
183    /// sret registers, if needed.
184    sret_reg: Option<ValueRegs<Reg>>,
185
186    /// Instruction colors at block exits. From this map, we can recover all
187    /// instruction colors by scanning backward from the block end and
188    /// decrementing on any color-changing (side-effecting) instruction.
189    block_end_colors: SecondaryMap<Block, InstColor>,
190
191    /// Instruction colors at side-effecting ops. This is the *entry* color,
192    /// i.e., the version of global state that exists before an instruction
193    /// executes.  For each side-effecting instruction, the *exit* color is its
194    /// entry color plus one.
195    side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
196
197    /// Current color as we scan during lowering. While we are lowering an
198    /// instruction, this is equal to the color *at entry to* the instruction.
199    cur_scan_entry_color: Option<InstColor>,
200
201    /// Current instruction as we scan during lowering.
202    cur_inst: Option<Inst>,
203
204    /// Instruction constant values, if known.
205    inst_constants: FxHashMap<Inst, u64>,
206
207    /// Use-counts per SSA value, as counted in the input IR. These
208    /// are "coarsened", in the abstract-interpretation sense: we only
209    /// care about "0, 1, many" states, as this is all we need and
210    /// this lets us do an efficient fixpoint analysis.
211    ///
212    /// See doc comment on `ValueUseState` for more details.
213    value_ir_uses: SecondaryMap<Value, ValueUseState>,
214
215    /// Actual uses of each SSA value so far, incremented while lowering.
216    value_lowered_uses: SecondaryMap<Value, u32>,
217
218    /// Effectful instructions that have been sunk; they are not codegen'd at
219    /// their original locations.
220    inst_sunk: FxHashSet<Inst>,
221
222    /// Instructions collected for the CLIF inst in progress, in forward order.
223    ir_insts: Vec<I>,
224
225    /// The register to use for GetPinnedReg, if any, on this architecture.
226    pinned_reg: Option<Reg>,
227
228    /// Compilation flags.
229    flags: Flags,
230}
231
232/// How is a value used in the IR?
233///
234/// This can be seen as a coarsening of an integer count. We only need
235/// distinct states for zero, one, or many.
236///
237/// This analysis deserves further explanation. The basic idea is that
238/// we want to allow instruction lowering to know whether a value that
239/// an instruction references is *only* referenced by that one use, or
240/// by others as well. This is necessary to know when we might want to
241/// move a side-effect: we cannot, for example, duplicate a load, so
242/// we cannot let instruction lowering match a load as part of a
243/// subpattern and potentially incorporate it.
244///
245/// Note that a lot of subtlety comes into play once we have
246/// *indirect* uses. The classical example of this in our development
247/// history was the x86 compare instruction, which is incorporated
248/// into flags users (e.g. `selectif`, `trueif`, branches) and can
249/// subsequently incorporate loads, or at least we would like it
250/// to. However, danger awaits: the compare might be the only user of
251/// a load, so we might think we can just move the load (and nothing
252/// is duplicated -- success!), except that the compare itself is
253/// codegen'd in multiple places, where it is incorporated as a
254/// subpattern itself.
255///
256/// So we really want a notion of "unique all the way along the
257/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
258/// to the semantics that we want here: we want to know when we've
259/// matched a unique use of an instruction, and that instruction's
260/// unique use of another instruction, etc, just as `&mut T` can only
261/// be obtained by going through a chain of `&mut T`. If one has a
262/// `&T` to a struct containing `&mut T` (one of several uses of an
263/// instruction that itself has a unique use of an instruction), one
264/// can only get a `&T` (one can only get a "I am one of several users
265/// of this instruction" result).
266///
267/// We could track these paths, either dynamically as one "looks up the operand
268/// tree" or precomputed. But the former requires state and means that the
269/// `Lower` API carries that state implicitly, which we'd like to avoid if we
270/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
271/// inst `i` unique from the point of view of `j`).
272///
273/// To make matters even a little more complex still, a value that is
274/// not uniquely used when initially viewing the IR can *become*
275/// uniquely used, at least as a root allowing further unique uses of
276/// e.g. loads to merge, if no other instruction actually merges
277/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
278/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
279/// point of view of lowering `v4` or `v3`, we cannot merge the load
280/// at `v1`. But if we decide just to use the assigned register for
281/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
282/// once, so it *is* a unique root at that point and we *can* merge
283/// the load.
284///
285/// Note also that the color scheme is not sufficient to give us this
286/// information, for various reasons: reasoning about side-effects
287/// does not tell us about potential duplication of uses through pure
288/// ops.
289///
290/// To keep things simple and avoid error-prone lowering APIs that
291/// would extract more information about whether instruction merging
292/// happens or not (we don't have that info now, and it would be
293/// difficult to refactor to get it and make that refactor 100%
294/// correct), we give up on the above "can become unique if not
295/// actually merged" point. Instead, we compute a
296/// transitive-uniqueness. That is what this enum represents.
297///
298/// To define it plainly: a value is `Unused` if no references exist
299/// to it; `Once` if only one other op refers to it, *and* that other
300/// op is `Unused` or `Once`; and `Multiple` otherwise. In other
301/// words, `Multiple` is contagious: even if an op's result value is
302/// directly used only once in the CLIF, that value is `Multiple` if
303/// the op that uses it is itself used multiple times (hence could be
304/// codegen'd multiple times). In brief, this analysis tells us
305/// whether, if every op merged all of its operand tree, a given op
306/// could be codegen'd in more than one place.
307///
308/// To compute this, we first consider direct uses. At this point
309/// `Unused` answers are correct, `Multiple` answers are correct, but
310/// some `Once`s may change to `Multiple`s. Then we propagate
311/// `Multiple` transitively using a workqueue/fixpoint algorithm.
312#[derive(Clone, Copy, Debug, PartialEq, Eq)]
313enum ValueUseState {
314    /// Not used at all.
315    Unused,
316    /// Used exactly once.
317    Once,
318    /// Used multiple times.
319    Multiple,
320}
321
322impl ValueUseState {
323    /// Add one use.
324    fn inc(&mut self) {
325        let new = match self {
326            Self::Unused => Self::Once,
327            Self::Once | Self::Multiple => Self::Multiple,
328        };
329        *self = new;
330    }
331}
332
333/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
334/// reference.
335#[derive(Clone, Copy, Debug, PartialEq, Eq)]
336pub enum RelocDistance {
337    /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
338    /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
339    /// 128MB offset. If unsure, use `Far` instead.
340    Near,
341    /// Target of relocation could be anywhere in the address space.
342    Far,
343}
344
345impl<'func, I: VCodeInst> Lower<'func, I> {
346    /// Prepare a new lowering context for the given IR function.
347    pub fn new(
348        f: &'func Function,
349        abi: Callee<I::ABIMachineSpec>,
350        emit_info: I::Info,
351        block_order: BlockLoweringOrder,
352        sigs: SigSet,
353        flags: Flags,
354    ) -> CodegenResult<Self> {
355        let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
356        let vcode = VCodeBuilder::new(
357            sigs,
358            abi,
359            emit_info,
360            block_order,
361            constants,
362            VCodeBuildDirection::Backward,
363        );
364
365        // We usually need two VRegs per instruction result, plus extras for
366        // various temporaries, but two per Value is a good starting point.
367        let mut vregs = VRegAllocator::with_capacity(f.dfg.num_values() * 2);
368
369        let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
370
371        // Assign a vreg to each block param and each inst result.
372        for bb in f.layout.blocks() {
373            for &param in f.dfg.block_params(bb) {
374                let ty = f.dfg.value_type(param);
375                if value_regs[param].is_invalid() {
376                    let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[param].clone())?;
377                    value_regs[param] = regs;
378                    trace!("bb {} param {}: regs {:?}", bb, param, regs);
379                }
380            }
381            for inst in f.layout.block_insts(bb) {
382                for &result in f.dfg.inst_results(inst) {
383                    let ty = f.dfg.value_type(result);
384                    if value_regs[result].is_invalid() && !ty.is_invalid() {
385                        let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[result].clone())?;
386                        value_regs[result] = regs;
387                        trace!(
388                            "bb {} inst {} ({:?}): result {} regs {:?}",
389                            bb,
390                            inst,
391                            f.dfg.insts[inst],
392                            result,
393                            regs,
394                        );
395                    }
396                }
397            }
398        }
399
400        // Find the sret register, if it's used.
401        let mut sret_param = None;
402        for ret in vcode.abi().signature().returns.iter() {
403            if ret.purpose == ArgumentPurpose::StructReturn {
404                let entry_bb = f.stencil.layout.entry_block().unwrap();
405                for (&param, sig_param) in f
406                    .dfg
407                    .block_params(entry_bb)
408                    .iter()
409                    .zip(vcode.abi().signature().params.iter())
410                {
411                    if sig_param.purpose == ArgumentPurpose::StructReturn {
412                        assert!(sret_param.is_none());
413                        sret_param = Some(param);
414                    }
415                }
416
417                assert!(sret_param.is_some());
418            }
419        }
420
421        let sret_reg = sret_param.map(|param| {
422            let regs = value_regs[param];
423            assert!(regs.len() == 1);
424            regs
425        });
426
427        // Compute instruction colors, find constant instructions, and find instructions with
428        // side-effects, in one combined pass.
429        let mut cur_color = 0;
430        let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
431        let mut side_effect_inst_entry_colors = FxHashMap::default();
432        let mut inst_constants = FxHashMap::default();
433        for bb in f.layout.blocks() {
434            cur_color += 1;
435            for inst in f.layout.block_insts(bb) {
436                let side_effect = has_lowering_side_effect(f, inst);
437
438                trace!("bb {} inst {} has color {}", bb, inst, cur_color);
439                if side_effect {
440                    side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
441                    trace!(" -> side-effecting; incrementing color for next inst");
442                    cur_color += 1;
443                }
444
445                // Determine if this is a constant; if so, add to the table.
446                if let Some(c) = is_constant_64bit(f, inst) {
447                    trace!(" -> constant: {}", c);
448                    inst_constants.insert(inst, c);
449                }
450            }
451
452            block_end_colors[bb] = InstColor::new(cur_color);
453        }
454
455        let value_ir_uses = Self::compute_use_states(f, sret_param);
456
457        Ok(Lower {
458            f,
459            vcode,
460            vregs,
461            value_regs,
462            sret_reg,
463            block_end_colors,
464            side_effect_inst_entry_colors,
465            inst_constants,
466            value_ir_uses,
467            value_lowered_uses: SecondaryMap::default(),
468            inst_sunk: FxHashSet::default(),
469            cur_scan_entry_color: None,
470            cur_inst: None,
471            ir_insts: vec![],
472            pinned_reg: None,
473            flags,
474        })
475    }
476
477    pub fn sigs(&self) -> &SigSet {
478        self.vcode.sigs()
479    }
480
481    pub fn sigs_mut(&mut self) -> &mut SigSet {
482        self.vcode.sigs_mut()
483    }
484
485    /// Pre-analysis: compute `value_ir_uses`. See comment on
486    /// `ValueUseState` for a description of what this analysis
487    /// computes.
488    fn compute_use_states(
489        f: &Function,
490        sret_param: Option<Value>,
491    ) -> SecondaryMap<Value, ValueUseState> {
492        // We perform the analysis without recursion, so we don't
493        // overflow the stack on long chains of ops in the input.
494        //
495        // This is sort of a hybrid of a "shallow use-count" pass and
496        // a DFS. We iterate over all instructions and mark their args
497        // as used. However when we increment a use-count to
498        // "Multiple" we push its args onto the stack and do a DFS,
499        // immediately marking the whole dependency tree as
500        // Multiple. Doing both (shallow use-counting over all insts,
501        // and deep Multiple propagation) lets us trim both
502        // traversals, stopping recursion when a node is already at
503        // the appropriate state.
504        //
505        // In particular, note that the *coarsening* into {Unused,
506        // Once, Multiple} is part of what makes this pass more
507        // efficient than a full indirect-use-counting pass.
508
509        let mut value_ir_uses = SecondaryMap::with_default(ValueUseState::Unused);
510
511        if let Some(sret_param) = sret_param {
512            // There's an implicit use of the struct-return parameter in each
513            // copy of the function epilogue, which we count here.
514            value_ir_uses[sret_param] = ValueUseState::Multiple;
515        }
516
517        // Stack of iterators over Values as we do DFS to mark
518        // Multiple-state subtrees. The iterator type is whatever is
519        // returned by `uses` below.
520        let mut stack: SmallVec<[_; 16]> = smallvec![];
521
522        // Find the args for the inst corresponding to the given value.
523        let uses = |value| {
524            trace!(" -> pushing args for {} onto stack", value);
525            if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
526                Some(f.dfg.inst_values(src_inst))
527            } else {
528                None
529            }
530        };
531
532        // Do a DFS through `value_ir_uses` to mark a subtree as
533        // Multiple.
534        for inst in f
535            .layout
536            .blocks()
537            .flat_map(|block| f.layout.block_insts(block))
538        {
539            // If this inst produces multiple values, we must mark all
540            // of its args as Multiple, because otherwise two uses
541            // could come in as Once on our two different results.
542            let force_multiple = f.dfg.inst_results(inst).len() > 1;
543
544            // Iterate over all values used by all instructions, noting an
545            // additional use on each operand.
546            for arg in f.dfg.inst_values(inst) {
547                debug_assert!(f.dfg.value_is_real(arg));
548                let old = value_ir_uses[arg];
549                if force_multiple {
550                    trace!(
551                        "forcing arg {} to Multiple because of multiple results of user inst",
552                        arg
553                    );
554                    value_ir_uses[arg] = ValueUseState::Multiple;
555                } else {
556                    value_ir_uses[arg].inc();
557                }
558                let new = value_ir_uses[arg];
559                trace!("arg {} used, old state {:?}, new {:?}", arg, old, new);
560
561                // On transition to Multiple, do DFS.
562                if old == ValueUseState::Multiple || new != ValueUseState::Multiple {
563                    continue;
564                }
565                if let Some(iter) = uses(arg) {
566                    stack.push(iter);
567                }
568                while let Some(iter) = stack.last_mut() {
569                    if let Some(value) = iter.next() {
570                        debug_assert!(f.dfg.value_is_real(value));
571                        trace!(" -> DFS reaches {}", value);
572                        if value_ir_uses[value] == ValueUseState::Multiple {
573                            // Truncate DFS here: no need to go further,
574                            // as whole subtree must already be Multiple.
575                            // With debug asserts, check one level of
576                            // that invariant at least.
577                            debug_assert!(uses(value).into_iter().flatten().all(|arg| {
578                                debug_assert!(f.dfg.value_is_real(arg));
579                                value_ir_uses[arg] == ValueUseState::Multiple
580                            }));
581                            continue;
582                        }
583                        value_ir_uses[value] = ValueUseState::Multiple;
584                        trace!(" -> became Multiple");
585                        if let Some(iter) = uses(value) {
586                            stack.push(iter);
587                        }
588                    } else {
589                        // Empty iterator, discard.
590                        stack.pop();
591                    }
592                }
593            }
594        }
595
596        value_ir_uses
597    }
598
599    fn gen_arg_setup(&mut self) {
600        if let Some(entry_bb) = self.f.layout.entry_block() {
601            trace!(
602                "gen_arg_setup: entry BB {} args are:\n{:?}",
603                entry_bb,
604                self.f.dfg.block_params(entry_bb)
605            );
606
607            for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
608                if self.value_ir_uses[*param] == ValueUseState::Unused {
609                    continue;
610                }
611                let regs = writable_value_regs(self.value_regs[*param]);
612                for insn in self
613                    .vcode
614                    .vcode
615                    .abi
616                    .gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
617                    .into_iter()
618                {
619                    self.emit(insn);
620                }
621            }
622            if let Some(insn) = self
623                .vcode
624                .vcode
625                .abi
626                .gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
627            {
628                self.emit(insn);
629            }
630
631            // The `args` instruction below must come first. Finish
632            // the current "IR inst" (with a default source location,
633            // as for other special instructions inserted during
634            // lowering) and continue the scan backward.
635            self.finish_ir_inst(Default::default());
636
637            if let Some(insn) = self.vcode.vcode.abi.take_args() {
638                self.emit(insn);
639            }
640        }
641    }
642
643    /// Generate the return instruction.
644    pub fn gen_return(&mut self, rets: Vec<ValueRegs<Reg>>) {
645        let mut out_rets = vec![];
646
647        let mut rets = rets.into_iter();
648        for (i, ret) in self
649            .abi()
650            .signature()
651            .returns
652            .clone()
653            .into_iter()
654            .enumerate()
655        {
656            let regs = if ret.purpose == ArgumentPurpose::StructReturn {
657                self.sret_reg.unwrap()
658            } else {
659                rets.next().unwrap()
660            };
661
662            let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
663                self.vcode.sigs(),
664                i,
665                regs,
666                &mut self.vregs,
667            );
668            out_rets.extend(regs);
669            for insn in insns {
670                self.emit(insn);
671            }
672        }
673
674        // Hack: generate a virtual instruction that uses vmctx in
675        // order to keep it alive for the duration of the function,
676        // for the benefit of debuginfo.
677        if self.f.dfg.values_labels.is_some() {
678            if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
679                if self.value_ir_uses[vmctx_val] != ValueUseState::Unused {
680                    let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
681                    self.emit(I::gen_dummy_use(vmctx_reg));
682                }
683            }
684        }
685
686        let inst = self.abi().gen_rets(out_rets);
687        self.emit(inst);
688    }
689
690    /// Has this instruction been sunk to a use-site (i.e., away from its
691    /// original location)?
692    fn is_inst_sunk(&self, inst: Inst) -> bool {
693        self.inst_sunk.contains(&inst)
694    }
695
696    // Is any result of this instruction needed?
697    fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
698        self.f
699            .dfg
700            .inst_results(inst)
701            .iter()
702            .any(|&result| self.value_lowered_uses[result] > 0)
703    }
704
705    fn lower_clif_block<B: LowerBackend<MInst = I>>(
706        &mut self,
707        backend: &B,
708        block: Block,
709        ctrl_plane: &mut ControlPlane,
710    ) -> CodegenResult<()> {
711        self.cur_scan_entry_color = Some(self.block_end_colors[block]);
712        // Lowering loop:
713        // - For each non-branch instruction, in reverse order:
714        //   - If side-effecting (load, store, branch/call/return,
715        //     possible trap), or if used outside of this block, or if
716        //     demanded by another inst, then lower.
717        //
718        // That's it! Lowering of side-effecting ops will force all *needed*
719        // (live) non-side-effecting ops to be lowered at the right places, via
720        // the `use_input_reg()` callback on the `Lower` (that's us). That's
721        // because `use_input_reg()` sets the eager/demand bit for any insts
722        // whose result registers are used.
723        //
724        // We set the VCodeBuilder to "backward" mode, so we emit
725        // blocks in reverse order wrt the BlockIndex sequence, and
726        // emit instructions in reverse order within blocks.  Because
727        // the machine backend calls `ctx.emit()` in forward order, we
728        // collect per-IR-inst lowered instructions in `ir_insts`,
729        // then reverse these and append to the VCode at the end of
730        // each IR instruction.
731        for inst in self.f.layout.block_insts(block).rev() {
732            let data = &self.f.dfg.insts[inst];
733            let has_side_effect = has_lowering_side_effect(self.f, inst);
734            // If  inst has been sunk to another location, skip it.
735            if self.is_inst_sunk(inst) {
736                continue;
737            }
738            // Are any outputs used at least once?
739            let value_needed = self.is_any_inst_result_needed(inst);
740            trace!(
741                "lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
742                block,
743                inst,
744                data,
745                data.opcode().is_branch(),
746                has_side_effect,
747                value_needed,
748            );
749
750            // Update scan state to color prior to this inst (as we are scanning
751            // backward).
752            self.cur_inst = Some(inst);
753            if has_side_effect {
754                let entry_color = *self
755                    .side_effect_inst_entry_colors
756                    .get(&inst)
757                    .expect("every side-effecting inst should have a color-map entry");
758                self.cur_scan_entry_color = Some(entry_color);
759            }
760
761            // Skip lowering branches; these are handled separately
762            // (see `lower_clif_branches()` below).
763            if self.f.dfg.insts[inst].opcode().is_branch() {
764                continue;
765            }
766
767            // Normal instruction: codegen if the instruction is side-effecting
768            // or any of its outputs is used.
769            if has_side_effect || value_needed {
770                trace!("lowering: inst {}: {}", inst, self.f.dfg.display_inst(inst));
771                let temp_regs = backend.lower(self, inst).unwrap_or_else(|| {
772                    let ty = if self.num_outputs(inst) > 0 {
773                        Some(self.output_ty(inst, 0))
774                    } else {
775                        None
776                    };
777                    panic!(
778                        "should be implemented in ISLE: inst = `{}`, type = `{:?}`",
779                        self.f.dfg.display_inst(inst),
780                        ty
781                    )
782                });
783
784                // The ISLE generated code emits its own registers to define the
785                // instruction's lowered values in. However, other instructions
786                // that use this SSA value will be lowered assuming that the value
787                // is generated into a pre-assigned, different, register.
788                //
789                // To connect the two, we set up "aliases" in the VCodeBuilder
790                // that apply when it is building the Operand table for the
791                // regalloc to use. These aliases effectively rewrite any use of
792                // the pre-assigned register to the register that was returned by
793                // the ISLE lowering logic.
794                let results = self.f.dfg.inst_results(inst);
795                debug_assert_eq!(temp_regs.len(), results.len());
796                for (regs, &result) in temp_regs.iter().zip(results) {
797                    let dsts = self.value_regs[result];
798                    debug_assert_eq!(regs.len(), dsts.len());
799                    for (&dst, &temp) in dsts.regs().iter().zip(regs.regs()) {
800                        trace!("set vreg alias: {result:?} = {dst:?}, lowering = {temp:?}");
801                        self.vregs.set_vreg_alias(dst, temp);
802                    }
803                }
804            }
805
806            let start = self.vcode.vcode.num_insts();
807            let loc = self.srcloc(inst);
808            self.finish_ir_inst(loc);
809
810            // If the instruction had a user stack map, forward it from the CLIF
811            // to the vcode.
812            if let Some(entries) = self.f.dfg.user_stack_map_entries(inst) {
813                let end = self.vcode.vcode.num_insts();
814                debug_assert!(end > start);
815                debug_assert_eq!(
816                    (start..end)
817                        .filter(|i| self.vcode.vcode[InsnIndex::new(*i)].is_safepoint())
818                        .count(),
819                    1
820                );
821                for i in start..end {
822                    let iix = InsnIndex::new(i);
823                    if self.vcode.vcode[iix].is_safepoint() {
824                        trace!(
825                            "Adding user stack map from clif\n\n\
826                                 {inst:?} `{}`\n\n\
827                             to vcode\n\n\
828                                 {iix:?} `{}`",
829                            self.f.dfg.display_inst(inst),
830                            &self.vcode.vcode[iix].pretty_print_inst(&mut Default::default()),
831                        );
832                        self.vcode
833                            .add_user_stack_map(BackwardsInsnIndex::new(iix.index()), entries);
834                        break;
835                    }
836                }
837            }
838
839            // maybe insert random instruction
840            if ctrl_plane.get_decision() {
841                if ctrl_plane.get_decision() {
842                    let imm: u64 = ctrl_plane.get_arbitrary();
843                    let reg = self.alloc_tmp(crate::ir::types::I64).regs()[0];
844                    I::gen_imm_u64(imm, reg).map(|inst| self.emit(inst));
845                } else {
846                    let imm: f64 = ctrl_plane.get_arbitrary();
847                    let tmp = self.alloc_tmp(crate::ir::types::I64).regs()[0];
848                    let reg = self.alloc_tmp(crate::ir::types::F64).regs()[0];
849                    for inst in I::gen_imm_f64(imm, tmp, reg) {
850                        self.emit(inst);
851                    }
852                }
853            }
854
855            // Emit value-label markers if needed, to later recover
856            // debug mappings. This must happen before the instruction
857            // (so after we emit, in bottom-to-top pass).
858            self.emit_value_label_markers_for_inst(inst);
859        }
860
861        // Add the block params to this block.
862        self.add_block_params(block)?;
863
864        self.cur_scan_entry_color = None;
865        Ok(())
866    }
867
868    fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
869        for &param in self.f.dfg.block_params(block) {
870            for &reg in self.value_regs[param].regs() {
871                let vreg = reg.to_virtual_reg().unwrap();
872                self.vcode.add_block_param(vreg);
873            }
874        }
875        Ok(())
876    }
877
878    fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
879        if let Some(ref values_labels) = self.f.dfg.values_labels {
880            debug_assert!(self.f.dfg.value_is_real(val));
881            trace!(
882                "get_value_labels: val {} -> {:?}",
883                val,
884                values_labels.get(&val)
885            );
886            match values_labels.get(&val) {
887                Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
888                Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
889                    self.get_value_labels(value, depth + 1)
890                }
891                _ => None,
892            }
893        } else {
894            None
895        }
896    }
897
898    fn emit_value_label_marks_for_value(&mut self, val: Value) {
899        let regs = self.value_regs[val];
900        if regs.len() > 1 {
901            return;
902        }
903        let reg = regs.only_reg().unwrap();
904
905        if let Some(label_starts) = self.get_value_labels(val, 0) {
906            let labels = label_starts
907                .iter()
908                .map(|&ValueLabelStart { label, .. }| label)
909                .collect::<FxHashSet<_>>();
910            for label in labels {
911                trace!(
912                    "value labeling: defines val {:?} -> reg {:?} -> label {:?}",
913                    val,
914                    reg,
915                    label,
916                );
917                self.vcode.add_value_label(reg, label);
918            }
919        }
920    }
921
922    fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
923        if self.f.dfg.values_labels.is_none() {
924            return;
925        }
926
927        trace!(
928            "value labeling: srcloc {}: inst {}",
929            self.srcloc(inst),
930            inst
931        );
932        for &val in self.f.dfg.inst_results(inst) {
933            self.emit_value_label_marks_for_value(val);
934        }
935    }
936
937    fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
938        if self.f.dfg.values_labels.is_none() {
939            return;
940        }
941
942        trace!("value labeling: block {}", block);
943        for &arg in self.f.dfg.block_params(block) {
944            self.emit_value_label_marks_for_value(arg);
945        }
946        self.finish_ir_inst(Default::default());
947    }
948
949    fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
950        // The VCodeBuilder builds in reverse order (and reverses at
951        // the end), but `ir_insts` is in forward order, so reverse
952        // it.
953        for inst in self.ir_insts.drain(..).rev() {
954            self.vcode.push(inst, loc);
955        }
956    }
957
958    fn finish_bb(&mut self) {
959        self.vcode.end_bb();
960    }
961
962    fn lower_clif_branches<B: LowerBackend<MInst = I>>(
963        &mut self,
964        backend: &B,
965        // Lowered block index:
966        bindex: BlockIndex,
967        // Original CLIF block:
968        block: Block,
969        branch: Inst,
970        targets: &[MachLabel],
971    ) -> CodegenResult<()> {
972        trace!(
973            "lower_clif_branches: block {} branch {:?} targets {:?}",
974            block,
975            branch,
976            targets,
977        );
978        // When considering code-motion opportunities, consider the current
979        // program point to be this branch.
980        self.cur_inst = Some(branch);
981
982        // Lower the branch in ISLE.
983        backend
984            .lower_branch(self, branch, targets)
985            .unwrap_or_else(|| {
986                panic!(
987                    "should be implemented in ISLE: branch = `{}`",
988                    self.f.dfg.display_inst(branch),
989                )
990            });
991        let loc = self.srcloc(branch);
992        self.finish_ir_inst(loc);
993        // Add block param outputs for current block.
994        self.lower_branch_blockparam_args(bindex);
995        Ok(())
996    }
997
998    fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
999        // TODO: why not make `block_order` public?
1000        for succ_idx in 0..self.vcode.block_order().succ_indices(block).1.len() {
1001            // Avoid immutable borrow by explicitly indexing.
1002            let (opt_inst, succs) = self.vcode.block_order().succ_indices(block);
1003            let inst = opt_inst.expect("lower_branch_blockparam_args called on a critical edge!");
1004            let succ = succs[succ_idx];
1005
1006            // The use of `succ_idx` to index `branch_destination` is valid on the assumption that
1007            // the traversal order defined in `visit_block_succs` mirrors the order returned by
1008            // `branch_destination`. If that assumption is violated, the branch targets returned
1009            // here will not match the clif.
1010            let branches = self.f.dfg.insts[inst].branch_destination(&self.f.dfg.jump_tables);
1011            let branch_args = branches[succ_idx].args_slice(&self.f.dfg.value_lists);
1012
1013            let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
1014            for &arg in branch_args {
1015                debug_assert!(self.f.dfg.value_is_real(arg));
1016                let regs = self.put_value_in_regs(arg);
1017                branch_arg_vregs.extend_from_slice(regs.regs());
1018            }
1019            self.vcode.add_succ(succ, &branch_arg_vregs[..]);
1020        }
1021    }
1022
1023    fn collect_branches_and_targets(
1024        &self,
1025        bindex: BlockIndex,
1026        _bb: Block,
1027        targets: &mut SmallVec<[MachLabel; 2]>,
1028    ) -> Option<Inst> {
1029        targets.clear();
1030        let (opt_inst, succs) = self.vcode.block_order().succ_indices(bindex);
1031        targets.extend(succs.iter().map(|succ| MachLabel::from_block(*succ)));
1032        opt_inst
1033    }
1034
1035    /// Lower the function.
1036    pub fn lower<B: LowerBackend<MInst = I>>(
1037        mut self,
1038        backend: &B,
1039        ctrl_plane: &mut ControlPlane,
1040    ) -> CodegenResult<VCode<I>> {
1041        trace!("about to lower function: {:?}", self.f);
1042
1043        self.vcode.init_retval_area(&mut self.vregs)?;
1044
1045        // Get the pinned reg here (we only parameterize this function on `B`,
1046        // not the whole `Lower` impl).
1047        self.pinned_reg = backend.maybe_pinned_reg();
1048
1049        self.vcode.set_entry(BlockIndex::new(0));
1050
1051        // Reused vectors for branch lowering.
1052        let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
1053
1054        // get a copy of the lowered order; we hold this separately because we
1055        // need a mut ref to the vcode to mutate it below.
1056        let lowered_order: SmallVec<[LoweredBlock; 64]> = self
1057            .vcode
1058            .block_order()
1059            .lowered_order()
1060            .iter()
1061            .cloned()
1062            .collect();
1063
1064        // Main lowering loop over lowered blocks.
1065        for (bindex, lb) in lowered_order.iter().enumerate().rev() {
1066            let bindex = BlockIndex::new(bindex);
1067
1068            // Lower the block body in reverse order (see comment in
1069            // `lower_clif_block()` for rationale).
1070
1071            // End branches.
1072            if let Some(bb) = lb.orig_block() {
1073                if let Some(branch) = self.collect_branches_and_targets(bindex, bb, &mut targets) {
1074                    self.lower_clif_branches(backend, bindex, bb, branch, &targets)?;
1075                    self.finish_ir_inst(self.srcloc(branch));
1076                }
1077            } else {
1078                // If no orig block, this must be a pure edge block;
1079                // get the successor and emit a jump. Add block params
1080                // according to the one successor, and pass them
1081                // through; note that the successor must have an
1082                // original block.
1083                let (_, succs) = self.vcode.block_order().succ_indices(bindex);
1084                let succ = succs[0];
1085
1086                let orig_succ = lowered_order[succ.index()];
1087                let orig_succ = orig_succ
1088                    .orig_block()
1089                    .expect("Edge block succ must be body block");
1090
1091                let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
1092                for ty in self.f.dfg.block_param_types(orig_succ) {
1093                    let regs = self.vregs.alloc(ty)?;
1094                    for &reg in regs.regs() {
1095                        branch_arg_vregs.push(reg);
1096                        let vreg = reg.to_virtual_reg().unwrap();
1097                        self.vcode.add_block_param(vreg);
1098                    }
1099                }
1100                self.vcode.add_succ(succ, &branch_arg_vregs[..]);
1101
1102                self.emit(I::gen_jump(MachLabel::from_block(succ)));
1103                self.finish_ir_inst(Default::default());
1104            }
1105
1106            // Original block body.
1107            if let Some(bb) = lb.orig_block() {
1108                self.lower_clif_block(backend, bb, ctrl_plane)?;
1109                self.emit_value_label_markers_for_block_args(bb);
1110            }
1111
1112            if bindex.index() == 0 {
1113                // Set up the function with arg vreg inits.
1114                self.gen_arg_setup();
1115                self.finish_ir_inst(Default::default());
1116            }
1117
1118            self.finish_bb();
1119
1120            // Check for any deferred vreg-temp allocation errors, and
1121            // bubble one up at this time if it exists.
1122            if let Some(e) = self.vregs.take_deferred_error() {
1123                return Err(e);
1124            }
1125        }
1126
1127        // Now that we've emitted all instructions into the
1128        // VCodeBuilder, let's build the VCode.
1129        trace!(
1130            "built vcode:\n{:?}Backwards {:?}",
1131            &self.vregs,
1132            &self.vcode.vcode
1133        );
1134        let vcode = self.vcode.build(self.vregs);
1135
1136        Ok(vcode)
1137    }
1138}
1139
1140/// Function-level queries.
1141impl<'func, I: VCodeInst> Lower<'func, I> {
1142    pub fn dfg(&self) -> &DataFlowGraph {
1143        &self.f.dfg
1144    }
1145
1146    /// Get the `Callee`.
1147    pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
1148        self.vcode.abi()
1149    }
1150
1151    /// Get the `Callee`.
1152    pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
1153        self.vcode.abi_mut()
1154    }
1155}
1156
1157/// Instruction input/output queries.
1158impl<'func, I: VCodeInst> Lower<'func, I> {
1159    /// Get the instdata for a given IR instruction.
1160    pub fn data(&self, ir_inst: Inst) -> &InstructionData {
1161        &self.f.dfg.insts[ir_inst]
1162    }
1163
1164    /// Likewise, but starting with a GlobalValue identifier.
1165    pub fn symbol_value_data<'b>(
1166        &'b self,
1167        global_value: GlobalValue,
1168    ) -> Option<(&'b ExternalName, RelocDistance, i64)> {
1169        let gvdata = &self.f.global_values[global_value];
1170        match gvdata {
1171            &GlobalValueData::Symbol {
1172                ref name,
1173                ref offset,
1174                colocated,
1175                ..
1176            } => {
1177                let offset = offset.bits();
1178                let dist = if colocated {
1179                    RelocDistance::Near
1180                } else {
1181                    RelocDistance::Far
1182                };
1183                Some((name, dist, offset))
1184            }
1185            _ => None,
1186        }
1187    }
1188
1189    /// Returns the memory flags of a given memory access.
1190    pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
1191        match &self.f.dfg.insts[ir_inst] {
1192            &InstructionData::AtomicCas { flags, .. } => Some(flags),
1193            &InstructionData::AtomicRmw { flags, .. } => Some(flags),
1194            &InstructionData::Load { flags, .. }
1195            | &InstructionData::LoadNoOffset { flags, .. }
1196            | &InstructionData::Store { flags, .. } => Some(flags),
1197            &InstructionData::StoreNoOffset { flags, .. } => Some(flags),
1198            _ => None,
1199        }
1200    }
1201
1202    /// Get the source location for a given instruction.
1203    pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
1204        self.f.rel_srclocs()[ir_inst]
1205    }
1206
1207    /// Get the number of inputs to the given IR instruction. This is a count only of the Value
1208    /// arguments to the instruction: block arguments will not be included in this count.
1209    pub fn num_inputs(&self, ir_inst: Inst) -> usize {
1210        self.f.dfg.inst_args(ir_inst).len()
1211    }
1212
1213    /// Get the number of outputs to the given IR instruction.
1214    pub fn num_outputs(&self, ir_inst: Inst) -> usize {
1215        self.f.dfg.inst_results(ir_inst).len()
1216    }
1217
1218    /// Get the type for an instruction's input.
1219    pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1220        self.value_ty(self.input_as_value(ir_inst, idx))
1221    }
1222
1223    /// Get the type for a value.
1224    pub fn value_ty(&self, val: Value) -> Type {
1225        self.f.dfg.value_type(val)
1226    }
1227
1228    /// Get the type for an instruction's output.
1229    pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1230        self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
1231    }
1232
1233    /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
1234    /// value, if possible.
1235    pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
1236        self.inst_constants.get(&ir_inst).map(|&c| {
1237            // The upper bits must be zero, enforced during legalization and by
1238            // the CLIF verifier.
1239            debug_assert_eq!(c, {
1240                let input_size = self.output_ty(ir_inst, 0).bits() as u64;
1241                let shift = 64 - input_size;
1242                (c << shift) >> shift
1243            });
1244            c
1245        })
1246    }
1247
1248    /// Get the input as one of two options other than a direct register:
1249    ///
1250    /// - An instruction, given that it is effect-free or able to sink its
1251    ///   effect to the current instruction being lowered, and given it has only
1252    ///   one output, and if effect-ful, given that this is the only use;
1253    /// - A constant, if the value is a constant.
1254    ///
1255    /// The instruction input may be available in either of these forms.  It may
1256    /// be available in neither form, if the conditions are not met; if so, use
1257    /// `put_input_in_regs()` instead to get it in a register.
1258    ///
1259    /// If the backend merges the effect of a side-effecting instruction, it
1260    /// must call `sink_inst()`. When this is called, it indicates that the
1261    /// effect has been sunk to the current scan location. The sunk
1262    /// instruction's result(s) must have *no* uses remaining, because it will
1263    /// not be codegen'd (it has been integrated into the current instruction).
1264    pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
1265        let val = self.f.dfg.inst_args(ir_inst)[idx];
1266        debug_assert!(self.f.dfg.value_is_real(val));
1267        val
1268    }
1269
1270    /// Like `get_input_as_source_or_const` but with a `Value`.
1271    pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
1272        let val = self.input_as_value(ir_inst, idx);
1273        self.get_value_as_source_or_const(val)
1274    }
1275
1276    /// Resolves a particular input of an instruction to the `Value` that it is
1277    /// represented with.
1278    pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
1279        trace!(
1280            "get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
1281            val,
1282            self.cur_inst,
1283            self.cur_scan_entry_color,
1284        );
1285        let inst = match self.f.dfg.value_def(val) {
1286            // OK to merge source instruction if (i) we have a source
1287            // instruction, and:
1288            // - It has no side-effects, OR
1289            // - It has a side-effect, has one output value, that one
1290            //   output has only one use, directly or indirectly (so
1291            //   cannot be duplicated -- see comment on
1292            //   `ValueUseState`), and the instruction's color is *one
1293            //   less than* the current scan color.
1294            //
1295            //   This latter set of conditions is testing whether a
1296            //   side-effecting instruction can sink to the current scan
1297            //   location; this is possible if the in-color of this inst is
1298            //   equal to the out-color of the producing inst, so no other
1299            //   side-effecting ops occur between them (which will only be true
1300            //   if they are in the same BB, because color increments at each BB
1301            //   start).
1302            //
1303            //   If it is actually sunk, then in `merge_inst()`, we update the
1304            //   scan color so that as we scan over the range past which the
1305            //   instruction was sunk, we allow other instructions (that came
1306            //   prior to the sunk instruction) to sink.
1307            ValueDef::Result(src_inst, result_idx) => {
1308                let src_side_effect = has_lowering_side_effect(self.f, src_inst);
1309                trace!(" -> src inst {}", src_inst);
1310                trace!(" -> has lowering side effect: {}", src_side_effect);
1311                if !src_side_effect {
1312                    // Pure instruction: always possible to
1313                    // sink. Let's determine whether we are the only
1314                    // user or not.
1315                    if self.value_ir_uses[val] == ValueUseState::Once {
1316                        InputSourceInst::UniqueUse(src_inst, result_idx)
1317                    } else {
1318                        InputSourceInst::Use(src_inst, result_idx)
1319                    }
1320                } else {
1321                    // Side-effect: test whether this is the only use of the
1322                    // only result of the instruction, and whether colors allow
1323                    // the code-motion.
1324                    trace!(
1325                        " -> side-effecting op {} for val {}: use state {:?}",
1326                        src_inst,
1327                        val,
1328                        self.value_ir_uses[val]
1329                    );
1330                    if self.cur_scan_entry_color.is_some()
1331                        && self.value_ir_uses[val] == ValueUseState::Once
1332                        && self.num_outputs(src_inst) == 1
1333                        && self
1334                            .side_effect_inst_entry_colors
1335                            .get(&src_inst)
1336                            .unwrap()
1337                            .get()
1338                            + 1
1339                            == self.cur_scan_entry_color.unwrap().get()
1340                    {
1341                        InputSourceInst::UniqueUse(src_inst, 0)
1342                    } else {
1343                        InputSourceInst::None
1344                    }
1345                }
1346            }
1347            _ => InputSourceInst::None,
1348        };
1349        let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
1350
1351        NonRegInput { inst, constant }
1352    }
1353
1354    /// Increment the reference count for the Value, ensuring that it gets lowered.
1355    pub fn increment_lowered_uses(&mut self, val: Value) {
1356        self.value_lowered_uses[val] += 1
1357    }
1358
1359    /// Put the `idx`th input into register(s) and return the assigned register.
1360    pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
1361        let val = self.f.dfg.inst_args(ir_inst)[idx];
1362        self.put_value_in_regs(val)
1363    }
1364
1365    /// Put the given value into register(s) and return the assigned register.
1366    pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
1367        debug_assert!(self.f.dfg.value_is_real(val));
1368        trace!("put_value_in_regs: val {}", val);
1369
1370        if let Some(inst) = self.f.dfg.value_def(val).inst() {
1371            assert!(!self.inst_sunk.contains(&inst));
1372        }
1373
1374        let regs = self.value_regs[val];
1375        trace!(" -> regs {:?}", regs);
1376        assert!(regs.is_valid());
1377
1378        self.value_lowered_uses[val] += 1;
1379
1380        regs
1381    }
1382}
1383
1384/// Codegen primitives: allocate temps, emit instructions, set result registers,
1385/// ask for an input to be gen'd into a register.
1386impl<'func, I: VCodeInst> Lower<'func, I> {
1387    /// Get a new temp.
1388    pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
1389        writable_value_regs(self.vregs.alloc_with_deferred_error(ty))
1390    }
1391
1392    /// Emit a machine instruction.
1393    pub fn emit(&mut self, mach_inst: I) {
1394        trace!("emit: {:?}", mach_inst);
1395        self.ir_insts.push(mach_inst);
1396    }
1397
1398    /// Indicate that the side-effect of an instruction has been sunk to the
1399    /// current scan location. This should only be done with the instruction's
1400    /// original results are not used (i.e., `put_input_in_regs` is not invoked
1401    /// for the input produced by the sunk instruction), otherwise the
1402    /// side-effect will occur twice.
1403    pub fn sink_inst(&mut self, ir_inst: Inst) {
1404        assert!(has_lowering_side_effect(self.f, ir_inst));
1405        assert!(self.cur_scan_entry_color.is_some());
1406
1407        for result in self.dfg().inst_results(ir_inst) {
1408            assert!(self.value_lowered_uses[*result] == 0);
1409        }
1410
1411        let sunk_inst_entry_color = self
1412            .side_effect_inst_entry_colors
1413            .get(&ir_inst)
1414            .cloned()
1415            .unwrap();
1416        let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
1417        assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
1418        self.cur_scan_entry_color = Some(sunk_inst_entry_color);
1419        self.inst_sunk.insert(ir_inst);
1420    }
1421
1422    /// Retrieve immediate data given a handle.
1423    pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
1424        self.f.dfg.immediates.get(imm).unwrap()
1425    }
1426
1427    /// Retrieve constant data given a handle.
1428    pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
1429        self.f.dfg.constants.get(constant_handle)
1430    }
1431
1432    /// Indicate that a constant should be emitted.
1433    pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
1434        self.vcode.constants().insert(constant)
1435    }
1436
1437    /// Cause the value in `reg` to be in a virtual reg, by copying it into a new virtual reg
1438    /// if `reg` is a real reg.  `ty` describes the type of the value in `reg`.
1439    pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
1440        if reg.to_virtual_reg().is_some() {
1441            reg
1442        } else {
1443            let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
1444            self.emit(I::gen_move(new_reg, reg, ty));
1445            new_reg.to_reg()
1446        }
1447    }
1448
1449    /// Add a range fact to a register, if no other fact is present.
1450    pub fn add_range_fact(&mut self, reg: Reg, bit_width: u16, min: u64, max: u64) {
1451        if self.flags.enable_pcc() {
1452            self.vregs.set_fact_if_missing(
1453                reg.to_virtual_reg().unwrap(),
1454                Fact::Range {
1455                    bit_width,
1456                    min,
1457                    max,
1458                },
1459            );
1460        }
1461    }
1462}