pub struct Random<R> {
pub rng: R,
pub part_count: usize,
}Expand description
Map elements to parts randomly.
§Example
use coupe::Partition as _;
use rand;
let mut partition = [0; 12];
coupe::Random { rng: rand::thread_rng(), part_count: 3 }
.partition(&mut partition, ())
.unwrap();Fields§
§rng: R§part_count: usizeTrait Implementations§
Auto Trait Implementations§
impl<R> Freeze for Random<R>where
R: Freeze,
impl<R> RefUnwindSafe for Random<R>where
R: RefUnwindSafe,
impl<R> Send for Random<R>where
R: Send,
impl<R> Sync for Random<R>where
R: Sync,
impl<R> Unpin for Random<R>where
R: Unpin,
impl<R> UnwindSafe for Random<R>where
R: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.