pub struct Greedy {
pub part_count: usize,
}Expand description
§Greedy number partitioning algorithm
Greedily assign weights to each part.
§Example
use coupe::Partition as _;
use coupe::Real;
let weights = [3.2, 6.8, 10.0, 7.5].map(Real::from);
let mut partition = [0; 4];
coupe::Greedy { part_count: 2 }
.partition(&mut partition, weights)
.unwrap();§Reference
Horowitz, Ellis and Sahni, Sartaj, 1974. Computing partitions with applications to the knapsack problem. J. ACM, 21(2):277–292. doi:10.1145/321812.321823.
Fields§
§part_count: usizeTrait Implementations§
Auto Trait Implementations§
impl Freeze for Greedy
impl RefUnwindSafe for Greedy
impl Send for Greedy
impl Sync for Greedy
impl Unpin for Greedy
impl UnwindSafe for Greedy
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.