Struct Counter

Source
pub struct Counter<T: Hash + Eq, N = usize> { /* private fields */ }

Implementations§

Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq, N: Zero,

Source

pub fn new() -> Self

Create a new, empty Counter

Source

pub fn with_capacity(capacity: usize) -> Self

Create a new, empty Counter with the specified capacity.

Note that capacity in this case indicates how many distinct items may be counted without reallocation. It is not related to the total number of items which may be counted. For example, "aaa" requires a capacity of 1. "abc" requires a capacity of 3.

Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero + One,

Source

pub fn init<I>(iterable: I) -> Self
where I: IntoIterator<Item = T>,

👎Deprecated: prefer the FromIterator/collect interface

Create a new Counter initialized with the given iterable.

Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq,

Source

pub fn into_map(self) -> HashMap<T, N>

Consumes this counter and returns a HashMap mapping the items to the counts.

Source

pub fn total<'a, S>(&'a self) -> S
where S: Sum<&'a N>,

Returns the sum of the counts.

Use len to get the number of elements in the counter and use total to get the sum of their counts.

§Examples
let counter = "abracadabra".chars().collect::<Counter<_>>();
assert_eq!(counter.total::<usize>(), 11);
assert_eq!(counter.len(), 5);
Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero + One,

Source

pub fn update<I>(&mut self, iterable: I)
where I: IntoIterator<Item = T>,

Add the counts of the elements from the given iterable to this counter.

Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq, N: PartialOrd + SubAssign + Zero + One,

Source

pub fn subtract<I>(&mut self, iterable: I)
where I: IntoIterator<Item = T>,

Remove the counts of the elements from the given iterable to this counter.

Non-positive counts are automatically removed.

let mut counter = "abbccc".chars().collect::<Counter<_>>();
counter.subtract("abba".chars());
let expect = [('c', 3)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq + Clone, N: Clone + Ord,

Source

pub fn most_common(&self) -> Vec<(T, N)>

Create a vector of (elem, frequency) pairs, sorted most to least common.

let mc = "pappaopolo".chars().collect::<Counter<_>>().most_common();
let expected = vec![('p', 4), ('o', 3), ('a', 2), ('l', 1)];
assert_eq!(mc, expected);

Note that the ordering of duplicates is unstable.

Source

pub fn most_common_tiebreaker<F>(&self, tiebreaker: F) -> Vec<(T, N)>
where F: FnMut(&T, &T) -> Ordering,

Create a vector of (elem, frequency) pairs, sorted most to least common.

In the event that two keys have an equal frequency, use the supplied ordering function to further arrange the results.

For example, we can sort reverse-alphabetically:

let counter = "eaddbbccc".chars().collect::<Counter<_>>();
let by_common = counter.most_common_tiebreaker(|&a, &b| b.cmp(&a));
let expected = vec![('c', 3), ('d', 2), ('b', 2), ('e', 1), ('a', 1)];
assert_eq!(by_common, expected);
Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq + Clone + Ord, N: Clone + Ord,

Source

pub fn most_common_ordered(&self) -> Vec<(T, N)>

Create a vector of (elem, frequency) pairs, sorted most to least common.

In the event that two keys have an equal frequency, use the natural ordering of the keys to further sort the results.

§Examples
let mc = "abracadabra".chars().collect::<Counter<_>>().most_common_ordered();
let expect = vec![('a', 5), ('b', 2), ('r', 2), ('c', 1), ('d', 1)];
assert_eq!(mc, expect);
§Time complexity

O(n * log n), where n is the number of items in the counter. If all you want is the top k items and k < n then it can be more efficient to use k_most_common_ordered.

Source

pub fn k_most_common_ordered(&self, k: usize) -> Vec<(T, N)>

Returns the k most common items in decreasing order of their counts.

The returned vector is the same as would be obtained by calling most_common_ordered and then truncating the result to length k. In particular, items with the same count are sorted in increasing order of their keys. Further, if k is greater than the length of the counter then the returned vector will have length equal to that of the counter, not k.

§Examples
let counter: Counter<_> = "abracadabra".chars().collect();
let top3 = counter.k_most_common_ordered(3);
assert_eq!(top3, vec![('a', 5), ('b', 2), ('r', 2)]);
§Time complexity

This method can be much more efficient than most_common_ordered when k is much smaller than the length of the counter n. When k = 1 the algorithm is equivalent to finding the minimum (or maximum) of n items, which requires n - 1 comparisons. For a fixed value of k > 1, the number of comparisons scales with n as n + O(log n) and the number of swaps scales as O(log n). As k approaches n, this algorithm approaches a heapsort of the n items, which has complexity O(n * log n).

For values of k close to n the sorting algorithm used by most_common_ordered will generally be faster than the heapsort used by this method by a small constant factor. Exactly where the crossover point occurs will depend on several factors. For small k choose this method. If k is a substantial fraction of n, it may be that most_common_ordered is faster. If performance matters in your application then it may be worth experimenting to see which of the two methods is faster.

Source§

impl<T, N> Counter<T, N>
where T: Hash + Eq, N: PartialOrd + Zero,

Source

pub fn is_superset(&self, other: &Self) -> bool

Test whether this counter is a superset of another counter. This is true if for all elements in this counter and the other, the count in this counter is greater than or equal to the count in the other.

c.is_superset(&d); -> c.iter().all(|(x, n)| n >= d[x]) && d.iter().all(|(x, n)| c[x] >= n)

let c = "aaabbc".chars().collect::<Counter<_>>();
let mut d = "abb".chars().collect::<Counter<_>>();

assert!(c.is_superset(&d));
d[&'e'] = 1;
assert!(!c.is_superset(&d));
Source

pub fn is_subset(&self, other: &Self) -> bool

Test whether this counter is a subset of another counter. This is true if for all elements in this counter and the other, the count in this counter is less than or equal to the count in the other.

c.is_subset(&d); -> c.iter().all(|(x, n)| n <= d[x]) && d.iter().all(|(x, n)| c[x] <= n)

let mut c = "abb".chars().collect::<Counter<_>>();
let mut d = "aaabbc".chars().collect::<Counter<_>>();

assert!(c.is_subset(&d));
c[&'e'] = 1;
assert!(!c.is_subset(&d));

Methods from Deref<Target = HashMap<T, N>>§

1.0.0 · Source

pub fn capacity(&self) -> usize

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

§Examples
use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);
1.0.0 · Source

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for key in map.keys() {
    println!("{key}");
}
§Performance

In the current implementation, iterating over keys takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.10.0 · Source

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for (key, val) in map.iter() {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn len(&self) -> usize

Returns the number of elements in the map.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
1.0.0 · Source

pub fn is_empty(&self) -> bool

Returns true if the map contains no elements.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
1.6.0 · Source

pub fn drain(&mut self) -> Drain<'_, K, V>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the map to optimize its implementation.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());
1.88.0 · Source

pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F>
where F: FnMut(&K, &mut V) -> bool,

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.

Note that extract_if lets you mutate every value in the filter closure, regardless of whether you choose to keep or remove it.

If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Use retain with a negated predicate if you do not need the returned iterator.

§Examples

Splitting a map into even and odd keys, reusing the original map:

use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let extracted: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect();

let mut evens = extracted.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
1.18.0 · Source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&K, &mut V) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) for which f(&k, &mut v) returns false. The elements are visited in unsorted (and unspecified) order.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);
§Performance

In the current implementation, this operation takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · Source

pub fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());
1.9.0 · Source

pub fn hasher(&self) -> &S

Returns a reference to the map’s BuildHasher.

§Examples
use std::collections::HashMap;
use std::hash::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();
1.0.0 · Source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling reserve, capacity will be greater than or equal to self.len() + additional. Does nothing if capacity is already sufficient.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);
1.57.0 · Source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>

Tries to reserve capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling try_reserve, capacity will be greater than or equal to self.len() + additional if it returns Ok(()). Does nothing if capacity is already sufficient.

§Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

§Examples
use std::collections::HashMap;

let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on a handful of bytes?");
1.0.0 · Source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
1.56.0 · Source

pub fn shrink_to(&mut self, min_capacity: usize)

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

If the current capacity is less than the lower limit, this is a no-op.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
1.0.0 · Source

pub fn entry(&mut self, key: K) -> Entry<'_, K, V>

Gets the given key’s corresponding entry in the map for in-place manipulation.

§Examples
use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    letters.entry(ch).and_modify(|counter| *counter += 1).or_insert(1);
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
1.0.0 · Source

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
1.40.0 · Source

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns the key-value pair corresponding to the supplied key. This is potentially useful:

  • for key types where non-identical keys can be considered equal;
  • for getting the &K stored key value from a borrowed &Q lookup key; or
  • for getting a reference to a key with the same lifetime as the collection.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;
use std::hash::{Hash, Hasher};

#[derive(Clone, Copy, Debug)]
struct S {
    id: u32,
    name: &'static str, // ignored by equality and hashing operations
}

impl PartialEq for S {
    fn eq(&self, other: &S) -> bool {
        self.id == other.id
    }
}

impl Eq for S {}

impl Hash for S {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

let j_a = S { id: 1, name: "Jessica" };
let j_b = S { id: 1, name: "Jess" };
let p = S { id: 2, name: "Paul" };
assert_eq!(j_a, j_b);

let mut map = HashMap::new();
map.insert(j_a, "Paris");
assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
assert_eq!(map.get_key_value(&p), None);
1.86.0 · Source

pub fn get_disjoint_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Attempts to get mutable references to N values in the map at once.

Returns an array of length N with the results of each query. For soundness, at most one mutable reference will be returned to any value. None will be used if the key is missing.

This method performs a check to ensure there are no duplicate keys, which currently has a time-complexity of O(n^2), so be careful when passing many keys.

§Panics

Panics if any keys are overlapping.

§Examples
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

// Get Athenæum and Bodleian Library
let [Some(a), Some(b)] = libraries.get_disjoint_mut([
    "Athenæum",
    "Bodleian Library",
]) else { panic!() };

// Assert values of Athenæum and Library of Congress
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    [
        Some(&mut 1807),
        Some(&mut 1800),
    ],
);

// Missing keys result in None
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(
    got,
    [
        Some(&mut 1807),
        None
    ]
);
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Athenæum".to_string(), 1807);

// Duplicate keys panic!
let got = libraries.get_disjoint_mut([
    "Athenæum",
    "Athenæum",
]);
1.86.0 · Source

pub unsafe fn get_disjoint_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Attempts to get mutable references to N values in the map at once, without validating that the values are unique.

Returns an array of length N with the results of each query. None will be used if the key is missing.

For a safe alternative see get_disjoint_mut.

§Safety

Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.

§Examples
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

// SAFETY: The keys do not overlap.
let [Some(a), Some(b)] = (unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "Bodleian Library",
]) }) else { panic!() };

// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "Library of Congress",
]) };
assert_eq!(
    got,
    [
        Some(&mut 1807),
        Some(&mut 1800),
    ],
);

// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_disjoint_unchecked_mut([
    "Athenæum",
    "New York Public Library",
]) };
// Missing keys result in None
assert_eq!(got, [Some(&mut 1807), None]);
1.0.0 · Source

pub fn contains_key<Q>(&self, k: &Q) -> bool
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
1.0.0 · Source

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
1.0.0 · Source

pub fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
Source

pub fn try_insert( &mut self, key: K, value: V, ) -> Result<&mut V, OccupiedError<'_, K, V>>

🔬This is a nightly-only experimental API. (map_try_insert)

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

§Examples

Basic usage:

#![feature(map_try_insert)]

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");
1.0.0 · Source

pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
1.27.0 · Source

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);

Trait Implementations§

Source§

impl<I, T, N> Add<I> for Counter<T, N>
where I: IntoIterator<Item = T>, T: Hash + Eq, N: AddAssign + Zero + One,

Source§

fn add(self, rhs: I) -> Self::Output

Consume self producing a Counter like self updated with the counts of the elements of I.

let counter = "abbccc".chars().collect::<Counter<_>>();

let new_counter = counter + "aeeeee".chars();
let expected: HashMap<char, usize> = [('a', 2), ('b', 2), ('c', 3), ('e', 5)]
    .iter().cloned().collect();
assert_eq!(new_counter.into_map(), expected);
Source§

type Output = Counter<T, N>

The resulting type after applying the + operator.
Source§

impl<T, N> Add for Counter<T, N>
where T: Clone + Hash + Eq, N: AddAssign + Zero,

Source§

fn add(self, rhs: Counter<T, N>) -> Self::Output

Add two counters together.

out = c + d; -> out[x] == c[x] + d[x] for all x

let c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

let e = c + d;

let expect = [('a', 4), ('b', 3)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(e.into_map(), expect);
Source§

type Output = Counter<T, N>

The resulting type after applying the + operator.
Source§

impl<I, T, N> AddAssign<I> for Counter<T, N>
where I: IntoIterator<Item = T>, T: Hash + Eq, N: AddAssign + Zero + One,

Source§

fn add_assign(&mut self, rhs: I)

Directly add the counts of the elements of I to self.

let mut counter = "abbccc".chars().collect::<Counter<_>>();

counter += "aeeeee".chars();
let expected: HashMap<char, usize> = [('a', 2), ('b', 2), ('c', 3), ('e', 5)]
    .iter().cloned().collect();
assert_eq!(counter.into_map(), expected);
Source§

impl<T, N> AddAssign for Counter<T, N>
where T: Hash + Eq, N: Zero + AddAssign,

Source§

fn add_assign(&mut self, rhs: Self)

Add another counter to this counter.

c += d; -> c[x] += d[x] for all x

let mut c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

c += d;

let expect = [('a', 4), ('b', 3)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(c.into_map(), expect);
Source§

impl<T, N> BitAnd for Counter<T, N>
where T: Hash + Eq, N: Ord + Zero,

Source§

fn bitand(self, rhs: Counter<T, N>) -> Self::Output

Returns the intersection of self and rhs as a new Counter.

out = c & d; -> out[x] == min(c[x], d[x])

let c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

let e = c & d;

let expect = [('a', 1), ('b', 1)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(e.into_map(), expect);
Source§

type Output = Counter<T, N>

The resulting type after applying the & operator.
Source§

impl<T, N> BitAndAssign for Counter<T, N>
where T: Hash + Eq, N: Ord + Zero,

Source§

fn bitand_assign(&mut self, rhs: Counter<T, N>)

Updates self with the intersection of self and rhs

c &= d; -> c[x] == min(c[x], d[x])

let mut c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

c &= d;

let expect = [('a', 1), ('b', 1)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(c.into_map(), expect);
Source§

impl<T, N> BitOr for Counter<T, N>
where T: Hash + Eq, N: Ord + Zero,

Source§

fn bitor(self, rhs: Counter<T, N>) -> Self::Output

Returns the union of self and rhs as a new Counter.

out = c | d; -> out[x] == max(c[x], d[x])

let c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

let e = c | d;

let expect = [('a', 3), ('b', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(e.into_map(), expect);
Source§

type Output = Counter<T, N>

The resulting type after applying the | operator.
Source§

impl<T, N> BitOrAssign for Counter<T, N>
where T: Hash + Eq, N: Ord + Zero,

Source§

fn bitor_assign(&mut self, rhs: Counter<T, N>)

Updates self with the union of self and rhs

c |= d; -> c[x] == max(c[x], d[x])

let mut c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

c |= d;

let expect = [('a', 3), ('b', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(c.into_map(), expect);
Source§

impl<T: Clone + Hash + Eq, N: Clone> Clone for Counter<T, N>

Source§

fn clone(&self) -> Counter<T, N>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T: Debug + Hash + Eq, N: Debug> Debug for Counter<T, N>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<T, N> Default for Counter<T, N>
where T: Hash + Eq, N: Default,

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<T, N> Deref for Counter<T, N>
where T: Hash + Eq,

Source§

type Target = HashMap<T, N>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &HashMap<T, N>

Dereferences the value.
Source§

impl<T, N> DerefMut for Counter<T, N>
where T: Hash + Eq,

Source§

fn deref_mut(&mut self) -> &mut HashMap<T, N>

Mutably dereferences the value.
Source§

impl<'a, T, N> Extend<(&'a T, &'a N)> for Counter<T, N>
where T: Hash + Eq + Clone + 'a, N: AddAssign + Zero + Clone + 'a,

Source§

fn extend<I: IntoIterator<Item = (&'a T, &'a N)>>(&mut self, iter: I)

Extend a counter with (item, count) tuples.

You can extend a Counter with another Counter:

let mut counter = "abbccc".chars().collect::<Counter<_>>();
let another = "bccddd".chars().collect::<Counter<_>>();
counter.extend(&another);
let expect = [('a', 1), ('b', 3), ('c', 5), ('d', 3)].iter()
    .cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
Source§

impl<T, N> Extend<(T, N)> for Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero,

Source§

fn extend<I: IntoIterator<Item = (T, N)>>(&mut self, iter: I)

Extend a counter with (item, count) tuples.

The counts of duplicate items are summed.

let mut counter = "abbccc".chars().collect::<Counter<_>>();
counter.extend([('a', 1), ('b', 2), ('c', 3), ('a', 4)].iter().cloned());
let expect = [('a', 6), ('b', 4), ('c', 6)].iter()
    .cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
Source§

impl<T, N> Extend<T> for Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero + One,

Source§

fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)

Extend a Counter with an iterator of items.

let mut counter = "abbccc".chars().collect::<Counter<_>>();
counter.extend("bccddd".chars());
let expect = [('a', 1), ('b', 3), ('c', 5), ('d', 3)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
Source§

impl<T, N> FromIterator<(T, N)> for Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero,

Source§

fn from_iter<I: IntoIterator<Item = (T, N)>>(iter: I) -> Self

Creates a counter from (item, count) tuples.

The counts of duplicate items are summed.

let counter = [('a', 1), ('b', 2), ('c', 3), ('a', 4)].iter()
    .cloned().collect::<Counter<_>>();
let expect = [('a', 5), ('b', 2), ('c', 3)].iter()
    .cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

impl<T, N> FromIterator<T> for Counter<T, N>
where T: Hash + Eq, N: AddAssign + Zero + One,

Source§

fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self

Produce a Counter from an iterator of items. This is called automatically by Iterator::collect().

let counter = "abbccc".chars().collect::<Counter<_>>();
let expect = [('a', 1), ('b', 2), ('c', 3)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(counter.into_map(), expect);
Source§

impl<T, Q, N> Index<&Q> for Counter<T, N>
where T: Hash + Eq + Borrow<Q>, Q: Hash + Eq, N: Zero,

Source§

fn index(&self, key: &Q) -> &N

Index in immutable contexts.

Returns a reference to a zero value for missing keys.

let counter = "aabbcc".chars().collect::<Counter<_>>();
assert_eq!(counter[&'a'], 2);
assert_eq!(counter[&'b'], 2);
assert_eq!(counter[&'c'], 2);
assert_eq!(counter[&'d'], 0);

Note that the zero is a struct field but not one of the values of the inner HashMap. This method does not modify any existing value.

let counter = "".chars().collect::<Counter<_>>();
assert_eq!(counter[&'a'], 0);
assert_eq!(counter.get(&'a'), None); // as `Deref<Target = HashMap<_, _>>`
Source§

type Output = N

The returned type after indexing.
Source§

impl<T, Q, N> IndexMut<&Q> for Counter<T, N>
where T: Hash + Eq + Borrow<Q>, Q: Hash + Eq + ToOwned<Owned = T>, N: Zero,

Source§

fn index_mut(&mut self, key: &Q) -> &mut N

Index in mutable contexts.

If the given key is not present, creates a new entry and initializes it with a zero value.

let mut counter = "aabbcc".chars().collect::<Counter<_>>();
counter[&'c'] += 1;
counter[&'d'] += 1;
assert_eq!(counter[&'c'], 3);
assert_eq!(counter[&'d'], 1);

Unlike Index::index, the returned mutable reference to the zero is actually one of the values of the inner HashMap.

let mut counter = "".chars().collect::<Counter<_>>();
assert_eq!(counter.get(&'a'), None); // as `Deref<Target = HashMap<_, _>>`
let _ = &mut counter[&'a'];
assert_eq!(counter.get(&'a'), Some(&0));
Source§

impl<'a, T, N> IntoIterator for &'a Counter<T, N>
where T: Hash + Eq,

Source§

type Item = (&'a T, &'a N)

The type of the elements being iterated over.
Source§

type IntoIter = Iter<'a, T, N>

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
Source§

impl<'a, T, N> IntoIterator for &'a mut Counter<T, N>
where T: Hash + Eq,

Source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator that provides mutable references to the counts, but keeps the keys immutable.

§Examples

let mut counter: Counter<_> = "aaab".chars().collect();

for (item, count) in &mut counter {
    if *item == 'a' {
        // 'a' is so great it counts as 2
        *count *= 2;
    }
}

assert_eq!(counter[&'a'], 6);
assert_eq!(counter[&'b'], 1);
Source§

type Item = (&'a T, &'a mut N)

The type of the elements being iterated over.
Source§

type IntoIter = IterMut<'a, T, N>

Which kind of iterator are we turning this into?
Source§

impl<T, N> IntoIterator for Counter<T, N>
where T: Hash + Eq,

Source§

fn into_iter(self) -> Self::IntoIter

Consumes the Counter to produce an iterator that owns the values it returns.

§Examples

let counter: Counter<_> = "aaab".chars().collect();

let vec: Vec<_> = counter.into_iter().collect();

for (item, count) in &vec {
    if item == &'a' {
        assert_eq!(count, &3);
    }
    if item == &'b' {
        assert_eq!(count, &1);
    }
}
Source§

type Item = (T, N)

The type of the elements being iterated over.
Source§

type IntoIter = IntoIter<T, N>

Which kind of iterator are we turning this into?
Source§

impl<T: PartialEq + Hash + Eq, N: PartialEq> PartialEq for Counter<T, N>

Source§

fn eq(&self, other: &Counter<T, N>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<I, T, N> Sub<I> for Counter<T, N>
where I: IntoIterator<Item = T>, T: Hash + Eq, N: PartialOrd + SubAssign + Zero + One,

Source§

fn sub(self, rhs: I) -> Self::Output

Consume self producing a Counter like self with the counts of the elements of I subtracted, keeping only positive values.

let c = "aaab".chars().collect::<Counter<_>>();
let e = c - "abb".chars();

let expect = [('a', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(e.into_map(), expect);
Source§

type Output = Counter<T, N>

The resulting type after applying the - operator.
Source§

impl<T, N> Sub for Counter<T, N>
where T: Hash + Eq, N: PartialOrd + PartialEq + SubAssign + Zero,

Source§

fn sub(self, rhs: Counter<T, N>) -> Self::Output

Subtract (keeping only positive values).

out = c - d; -> out[x] == c[x] - d[x] for all x, keeping only items with a value greater than N::zero().

let c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

let e = c - d;

let expect = [('a', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(e.into_map(), expect);
Source§

type Output = Counter<T, N>

The resulting type after applying the - operator.
Source§

impl<I, T, N> SubAssign<I> for Counter<T, N>
where I: IntoIterator<Item = T>, T: Hash + Eq, N: PartialOrd + SubAssign + Zero + One,

Source§

fn sub_assign(&mut self, rhs: I)

Directly subtract the counts of the elements of I from self, keeping only items with a value greater than N::zero().

let mut c = "aaab".chars().collect::<Counter<_>>();
c -= "abb".chars();

let expect = [('a', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(c.into_map(), expect);
Source§

impl<T, N> SubAssign for Counter<T, N>
where T: Hash + Eq, N: PartialOrd + PartialEq + SubAssign + Zero,

Source§

fn sub_assign(&mut self, rhs: Self)

Subtract (keeping only positive values).

c -= d; -> c[x] -= d[x] for all x, keeping only items with a value greater than N::zero().

let mut c = "aaab".chars().collect::<Counter<_>>();
let d = "abb".chars().collect::<Counter<_>>();

c -= d;

let expect = [('a', 2)].iter().cloned().collect::<HashMap<_, _>>();
assert_eq!(c.into_map(), expect);
Source§

impl<T: Eq + Hash + Eq, N: Eq> Eq for Counter<T, N>

Source§

impl<T: Hash + Eq, N> StructuralPartialEq for Counter<T, N>

Auto Trait Implementations§

§

impl<T, N> Freeze for Counter<T, N>
where N: Freeze,

§

impl<T, N> RefUnwindSafe for Counter<T, N>

§

impl<T, N> Send for Counter<T, N>
where N: Send, T: Send,

§

impl<T, N> Sync for Counter<T, N>
where N: Sync, T: Sync,

§

impl<T, N> Unpin for Counter<T, N>
where N: Unpin, T: Unpin,

§

impl<T, N> UnwindSafe for Counter<T, N>
where N: UnwindSafe, T: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.