# Struct constgebra::CMatrix

``pub struct CMatrix<const R: usize, const C: usize>(_);``
Expand description

A `const` matrix type, with dimensions checked at compile time for all operations.

## Implementations§

source§

### impl<const R: usize, const C: usize> CMatrix<R, C>

source

#### pub const fn new(vals: [[f64; C]; R]) -> Self

Create a `CMatrix` from a 2D array of `f64`.

``````const ARRAY: [[f64; 2]; 2] = [
[4.0, 7.0],
[2.0, 6.0]
];

const CMATRIX: CMatrix::<2, 2> = CMatrix::new(ARRAY);``````
source

#### pub const fn finish(self) -> [[f64; C]; R]

Converts a `CMatrix` back into a two-dimensional array.

``````const ARRAY: [[f64; 2]; 2] = [
[4.0, 7.0],
[2.0, 6.0]
];

const CMATRIX: CMatrix::<2, 2> = CMatrix::new(ARRAY);

const RESULT: [[f64; 2]; 2] = CMATRIX.finish();

assert_eq!(ARRAY, RESULT)``````
source

#### pub const fn mul<const OC: usize>(self, rhs: CMatrix<C, OC>) -> CMatrix<R, OC>

Multiply two `CMatrix` and return the result. Columns of self and rows of multiplier must agree in number.

`````` const LEFT: CMatrix<4, 3> = CMatrix::new([
[1.0, 0.0, 1.0],
[2.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[1.0, 1.0, 2.0],
]);

const RIGHT: CMatrix<3, 3> = CMatrix::new([
[1.0, 2.0, 1.0],
[2.0, 3.0, 1.0],
[4.0, 2.0, 2.0]
]);

const EXPECTED: [[f64; 3]; 4] = [
[5.0, 4.0, 3.0],
[8.0, 9.0, 5.0],
[6.0, 5.0, 3.0],
[11.0, 9.0, 6.0],
];

const RESULT: [[f64; 3]; 4] = LEFT.mul(RIGHT).finish();

assert_eq!(EXPECTED, RESULT);``````
source

#### pub const fn add(self, rhs: Self) -> Self

Add two `CMatrix` and return the result.

``````const LEFT: CMatrix<3, 3> = CMatrix::new([
[1.0, 0.0, 1.0],
[2.0, 1.0, 1.0],
[0.0, 1.0, 1.0]]
);

const RIGHT: CMatrix<3, 3> = CMatrix::new([
[1.0, 2.0, 1.0],
[2.0, 3.0, 1.0],
[4.0, 2.0, 2.0]]
);

const EXPECTED: [[f64; 3]; 3] = [
[2.0, 2.0, 2.0],
[4.0, 4.0, 2.0],
[4.0, 3.0, 3.0]
];

const RESULT: [[f64; 3]; 3] = LEFT.add(RIGHT).finish();

assert_eq!(EXPECTED, RESULT);``````
source

#### pub const fn sub(self, rhs: Self) -> Self

Subtract two `CMatrix` and return the result.

``````const LEFT: CMatrix<3, 3> = CMatrix::new([
[1.0, 2.0, 1.0],
[2.0, 3.0, 1.0],
[4.0, 2.0, 2.0]]
);

const RIGHT: CMatrix<3, 3> = CMatrix::new([
[1.0, 0.0, 1.0],
[2.0, 1.0, 1.0],
[0.0, 1.0, 1.0]]
);

const EXPECTED: [[f64; 3]; 3] = [
[0.0, 2.0, 0.0],
[0.0, 2.0, 0.0],
[4.0, 1.0, 1.0]
];

const RESULT: [[f64; 3]; 3] = LEFT.sub(RIGHT).finish();

assert_eq!(EXPECTED, RESULT);``````
source

#### pub const fn apply_each(self, op: Operation) -> Self

Apply an operation to each member of the matrix separately. Especially useful for scaling vectors

``````const BASE: CMatrix<1, 3> = CMatrix::new([[1.0, 2.0, 3.0]]);
const MUL: CMatrix<1, 3> = BASE.apply_each(Operation::Mul(3.0));
assert_eq!([[3.0, 6.0, 9.0]], MUL.finish());``````
source

#### pub const fn transpose(self) -> CMatrix<C, R>

Return the transpose of a `CMatrix`.

``````const START: [[f64; 2]; 2] = [
[4.0, 7.0],
[2.0, 6.0]
];

const EXPECTED: [[f64; 2]; 2] = [
[4.0, 2.0],
[7.0, 6.0]
];

const RESULT: [[f64; 2]; 2] =
CMatrix::new(START).transpose().finish();

assert_eq!(EXPECTED, RESULT)``````
source

source

source

#### pub const fn svd(self, epsilon: f64) -> CMatrix<C, R>

Singular Value Decomposition

source

source§

### impl<const N: usize> CMatrix<1, N>

source

#### pub const fn new_vector(vals: [f64; N]) -> CVector<N>

Special case of `CMatrix::new` for constructing a CVector Always returns a row vector, follow with `transpose` to build a column vector

``````const ARRAY: [f64; 2] = [4.0, 7.0];

const ROWVECTOR: CVector::<2> = CVector::new_vector(ARRAY);``````
source

#### pub const fn finish_vector(self) -> [f64; N]

Special case of `CMatrix::finish` for use with a CVector, returns `[f64 ; N]` instead of `[[f64 ; N]; 1]`

``````const ARRAY: [f64; 2] = [4.0, 7.0];

const CVECTOR: CVector::<2> = CVector::new_vector(ARRAY);

const RESULT: [f64; 2] = CVECTOR.finish_vector();

assert_eq!(ARRAY, RESULT)``````

## Trait Implementations§

source§

### impl<const R: usize, const C: usize> Clone for CMatrix<R, C>

source§

#### fn clone(&self) -> CMatrix<R, C>

Returns a copy of the value. Read more
1.0.0 · source§

#### fn clone_from(&mut self, source: &Self)

Performs copy-assignment from `source`. Read more
source§

### impl<const R: usize, const C: usize> Default for CMatrix<R, C>

source§

#### fn default() -> Self

Returns the “default value” for a type. Read more
source§

### impl<const R: usize, const C: usize> PartialEq<CMatrix<R, C>> for CMatrix<R, C>

source§

#### fn eq(&self, other: &CMatrix<R, C>) -> bool

This method tests for `self` and `other` values to be equal, and is used by `==`.
1.0.0 · source§

#### fn ne(&self, other: &Rhs) -> bool

This method tests for `!=`. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

### impl<const R: usize, const C: usize> PartialOrd<CMatrix<R, C>> for CMatrix<R, C>

source§

#### fn partial_cmp(&self, other: &CMatrix<R, C>) -> Option<Ordering>

This method returns an ordering between `self` and `other` values if one exists. Read more
1.0.0 · source§

#### fn lt(&self, other: &Rhs) -> bool

This method tests less than (for `self` and `other`) and is used by the `<` operator. Read more
1.0.0 · source§

#### fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for `self` and `other`) and is used by the `<=` operator. Read more
1.0.0 · source§

#### fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for `self` and `other`) and is used by the `>` operator. Read more
1.0.0 · source§

#### fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for `self` and `other`) and is used by the `>=` operator. Read more
source§

source§

§

§

§

§

§

## Blanket Implementations§

source§

### impl<T> Any for Twhere T: 'static + ?Sized,

source§

#### fn type_id(&self) -> TypeId

Gets the `TypeId` of `self`. Read more
source§

### impl<T> Borrow<T> for Twhere T: ?Sized,

source§

#### fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

### impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

#### fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

### impl<T> From<T> for T

source§

#### fn from(t: T) -> T

Returns the argument unchanged.

source§

### impl<T, U> Into<U> for Twhere U: From<T>,

source§

#### fn into(self) -> U

Calls `U::from(self)`.

That is, this conversion is whatever the implementation of `From<T> for U` chooses to do.

source§

### impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

#### type Error = Infallible

The type returned in the event of a conversion error.
source§

#### fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

### impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

#### type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

#### fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.