pub struct LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64(pub ImplLwePrivateFunctionalPackingKeyswitchKeyList<Vec<u64>>);
Expand description

A structure representing a vector of private functional packing keyswitch keys used for a circuit bootsrap with 64 bits of precision.

Tuple Fields

0: ImplLwePrivateFunctionalPackingKeyswitchKeyList<Vec<u64>>

Trait Implementations

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more

Description:

Implementation of EntityDeserializationEngine for DefaultSerializationEngine that operates on 64 bits integers. It deserializes an LWE circuit bootstrap private functional packing keyswitch vector.

Example:
use concrete_core::prelude::{
    DecompositionBaseLog, DecompositionLevelCount, FunctionalPackingKeyswitchKeyCount,
    GlweDimension, LweDimension, Variance, *,
};

// DISCLAIMER: the parameters used here are only for test purpose, and are not secure.
let input_lwe_dimension = LweDimension(10);
let output_glwe_dimension = GlweDimension(3);
let polynomial_size = PolynomialSize(256);
let decomposition_base_log = DecompositionBaseLog(3);
let decomposition_level_count = DecompositionLevelCount(5);
let noise = Variance(2_f64.powf(-25.));

// Unix seeder must be given a secret input.
// Here we just give it 0, which is totally unsafe.
const UNSAFE_SECRET: u128 = 0;
let mut engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let input_key: LweSecretKey64 = engine.generate_new_lwe_secret_key(input_lwe_dimension)?;
let output_key: GlweSecretKey64 =
    engine.generate_new_glwe_secret_key(output_glwe_dimension, polynomial_size)?;

let cbs_private_functional_packing_keyswitch_key:
    LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 =
    engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &input_key,
        &output_key,
        decomposition_base_log,
        decomposition_level_count,
        noise,
)?;

let mut serialization_engine = DefaultSerializationEngine::new(())?;
let serialized =
    serialization_engine.serialize(&cbs_private_functional_packing_keyswitch_key)?;
let recovered = serialization_engine.deserialize(serialized.as_slice())?;
assert_eq!(cbs_private_functional_packing_keyswitch_key, recovered);
Unsafely deserializes an entity. Read more

Description:

Implementation of EntitySerializationEngine for DefaultSerializationEngine that operates on 64 bits integers. It serializes an LWE circuit bootstrap private functional packing keyswitch vector.

Example:
use concrete_core::prelude::{
    DecompositionBaseLog, DecompositionLevelCount, FunctionalPackingKeyswitchKeyCount,
    GlweDimension, LweDimension, Variance, *,
};

// DISCLAIMER: the parameters used here are only for test purpose, and are not secure.
let input_lwe_dimension = LweDimension(10);
let output_glwe_dimension = GlweDimension(3);
let polynomial_size = PolynomialSize(256);
let decomposition_base_log = DecompositionBaseLog(3);
let decomposition_level_count = DecompositionLevelCount(5);
let noise = Variance(2_f64.powf(-25.));

// Unix seeder must be given a secret input.
// Here we just give it 0, which is totally unsafe.
const UNSAFE_SECRET: u128 = 0;
let mut engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let input_key: LweSecretKey64 = engine.generate_new_lwe_secret_key(input_lwe_dimension)?;
let output_key: GlweSecretKey64 =
    engine.generate_new_glwe_secret_key(output_glwe_dimension, polynomial_size)?;

let cbs_private_functional_packing_keyswitch_key:
    LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 =
    engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &input_key,
        &output_key,
        decomposition_base_log,
        decomposition_level_count,
        noise,
)?;

let mut serialization_engine = DefaultSerializationEngine::new(())?;
let serialized =
    serialization_engine.serialize(&cbs_private_functional_packing_keyswitch_key)?;
let recovered = serialization_engine.deserialize(serialized.as_slice())?;
assert_eq!(cbs_private_functional_packing_keyswitch_key, recovered);
Unsafely serializes an entity. Read more

Description:

Implementation of LweCiphertextDiscardingCircuitBootstrapBooleanEngine for FftEngine that operates on 64 bits integers.

Example
use concrete_core::prelude::*;

// Define settings for an insecure toy example
let polynomial_size = PolynomialSize(512);
let glwe_dimension = GlweDimension(2);
let small_lwe_dimension = LweDimension(10);

// The following sets of decomposition parameters are independant and can be adapted for
// your use case, having identical parameters for some of them here is a coincidence
let level_bsk = DecompositionLevelCount(2);
let base_log_bsk = DecompositionBaseLog(15);

let level_pfpksk = DecompositionLevelCount(2);
let base_log_pfpksk = DecompositionBaseLog(15);

let level_count_cbs = DecompositionLevelCount(1);
let base_log_cbs = DecompositionBaseLog(10);

let std = LogStandardDev::from_log_standard_dev(-60.);
let noise = Variance(std.get_variance());

const UNSAFE_SECRET: u128 = 0;
let mut default_engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let mut default_parallel_engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let mut fft_engine = FftEngine::new(())?;

let glwe_sk: GlweSecretKey64 =
    default_engine.generate_new_glwe_secret_key(glwe_dimension, polynomial_size)?;
let small_lwe_sk: LweSecretKey64 =
    default_engine.generate_new_lwe_secret_key(small_lwe_dimension)?;
let big_lwe_sk: LweSecretKey64 =
    default_engine.transform_glwe_secret_key_to_lwe_secret_key(glwe_sk.clone())?;
let std_bsk: LweBootstrapKey64 = default_parallel_engine.generate_new_lwe_bootstrap_key(
    &small_lwe_sk,
    &glwe_sk,
    base_log_bsk,
    level_bsk,
    noise,
)?;
let fbsk: FftFourierLweBootstrapKey64 = fft_engine.convert_lwe_bootstrap_key(&std_bsk)?;
let cbs_pfpksk: LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 = default_engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &big_lwe_sk,
        &glwe_sk,
        base_log_pfpksk,
        level_pfpksk,
        noise,
    )?;

// delta_log indicates where the information bit is stored in the input LWE ciphertext, here
// we put it in the most significant bit, which corresponds to 2 ^ 63
let delta_log = DeltaLog(63);

let value = 1u64;
// Encryption of 'value' in an LWE ciphertext using delta_log for the encoding
let plaintext: Plaintext64 = default_engine.create_plaintext_from(&(value << delta_log.0))?;
let lwe_in: LweCiphertext64 =
    default_engine.encrypt_lwe_ciphertext(&small_lwe_sk, &plaintext, noise)?;

// Create an empty GGSW ciphertext with a trivial encryption of 0
let zero_plaintext: Plaintext64 = default_engine.create_plaintext_from(&0u64)?;
let mut output_ggsw: GgswCiphertext64 = default_engine
    .trivially_encrypt_scalar_ggsw_ciphertext(
        polynomial_size,
        glwe_dimension.to_glwe_size(),
        level_count_cbs,
        base_log_cbs,
        &zero_plaintext,
    )?;

fft_engine.discard_circuit_bootstrap_boolean_lwe_ciphertext(
    &mut output_ggsw,
    &lwe_in,
    delta_log,
    &fbsk,
    &cbs_pfpksk,
)?;
Unsafely perfom the circuit bootstrap on the input LWE ciphertext. Read more
Example:
use concrete_core::prelude::*;
// DISCLAIMER: the parameters used here are only for test purpose, and are not secure.
let polynomial_size = PolynomialSize(1024);
let glwe_dimension = GlweDimension(1);
let lwe_dimension = LweDimension(481);

let var_small = Variance::from_variance(2f64.powf(-80.0));
let var_big = Variance::from_variance(2f64.powf(-70.0));

const UNSAFE_SECRET: u128 = 0;
let mut default_engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let mut default_parallel_engine =
    DefaultParallelEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let mut fft_engine = FftEngine::new(())?;

let glwe_sk: GlweSecretKey64 =
    default_engine.generate_new_glwe_secret_key(glwe_dimension, polynomial_size)?;
let lwe_small_sk: LweSecretKey64 = default_engine.generate_new_lwe_secret_key(lwe_dimension)?;
let lwe_big_sk: LweSecretKey64 =
    default_engine.transform_glwe_secret_key_to_lwe_secret_key(glwe_sk.clone())?;

let bsk_level_count = DecompositionLevelCount(9);
let bsk_base_log = DecompositionBaseLog(4);

let std_bsk: LweBootstrapKey64 = default_parallel_engine.generate_new_lwe_bootstrap_key(
    &lwe_small_sk,
    &glwe_sk,
    bsk_base_log,
    bsk_level_count,
    var_small,
)?;

let fourier_bsk: FftFourierLweBootstrapKey64 =
    fft_engine.convert_lwe_bootstrap_key(&std_bsk)?;

let ksk_level_count = DecompositionLevelCount(9);
let ksk_base_log = DecompositionBaseLog(1);

let ksk_big_to_small: LweKeyswitchKey64 = default_engine.generate_new_lwe_keyswitch_key(
    &lwe_big_sk,
    &lwe_small_sk,
    ksk_level_count,
    ksk_base_log,
    var_big,
)?;

let pfpksk_level_count = DecompositionLevelCount(9);
let pfpksk_base_log = DecompositionBaseLog(4);

let cbs_pfpksk: LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 = default_engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &lwe_big_sk,
        &glwe_sk,
        pfpksk_base_log,
        pfpksk_level_count,
        var_small,
    )?;

// We will have a message with 10 bits of information
let message_bits = 10;
let bits_to_extract = ExtractedBitsCount(message_bits);

// The value we encrypt is 42, we will extract the bits of this value and apply the
// circuit bootstrapping followed by the vertical packing on the extracted bits.
let cleartext = 42;
let delta_log_msg = DeltaLog(64 - message_bits);

let encoded_message = default_engine.create_plaintext_from(&(cleartext << delta_log_msg.0))?;
let lwe_in = default_engine.encrypt_lwe_ciphertext(&lwe_big_sk, &encoded_message, var_big)?;

// Bit extraction output, use the zero_encrypt engine to allocate a ciphertext vector
let mut bit_extraction_output = default_engine.zero_encrypt_lwe_ciphertext_vector(
    &lwe_small_sk,
    var_small,
    LweCiphertextCount(bits_to_extract.0),
)?;

fft_engine.discard_extract_bits_lwe_ciphertext(
    &mut bit_extraction_output,
    &lwe_in,
    &fourier_bsk,
    &ksk_big_to_small,
    bits_to_extract,
    delta_log_msg,
)?;

// Though the delta log here is the same as the message delta log, in the general case they
// are different, so we create two DeltaLog parameters
let delta_log_lut = DeltaLog(64 - message_bits);

// Create a look-up table we want to apply during vertical packing, here just the identity
// with the proper encoding.
// Note that this particular table will not trigger the cmux tree from the vertical packing,
// adapt the LUT generation to your usage.
// Here we apply a single look-up table as we output a single ciphertext.
let number_of_luts_and_output_vp_ciphertexts = 1;
let lut_size = 1 << bits_to_extract.0;
let mut lut: Vec<u64> = Vec::with_capacity(lut_size);

for i in 0..lut_size {
    lut.push((i as u64 % (1 << message_bits)) << delta_log_lut.0);
}

let lut_as_plaintext_vector = default_engine.create_plaintext_vector_from(lut.as_slice())?;

// We run on views, so we need a container for the output
let mut output_cbs_vp_ct_container = vec![
    0u64;
    lwe_big_sk.lwe_dimension().to_lwe_size().0
        * number_of_luts_and_output_vp_ciphertexts
];

let mut output_cbs_vp_ct_mut_view: LweCiphertextVectorMutView64 = default_engine
    .create_lwe_ciphertext_vector_from(
        output_cbs_vp_ct_container.as_mut_slice(),
        lwe_big_sk.lwe_dimension().to_lwe_size(),
    )?;
// And we need to get a view on the bits extracted earlier that serve as inputs to the
// circuit bootstrap + vertical packing
let extracted_bits_lwe_size = bit_extraction_output.lwe_dimension().to_lwe_size();
let extracted_bits_container =
    default_engine.consume_retrieve_lwe_ciphertext_vector(bit_extraction_output)?;
let cbs_vp_input_vector_view: LweCiphertextVectorView64 = default_engine
    .create_lwe_ciphertext_vector_from(
        extracted_bits_container.as_slice(),
        extracted_bits_lwe_size,
    )?;

let cbs_level_count = DecompositionLevelCount(4);
let cbs_base_log = DecompositionBaseLog(6);

fft_engine.discard_circuit_bootstrap_boolean_vertical_packing_lwe_ciphertext_vector(
    &mut output_cbs_vp_ct_mut_view,
    &cbs_vp_input_vector_view,
    &fourier_bsk,
    &lut_as_plaintext_vector,
    cbs_level_count,
    cbs_base_log,
    &cbs_pfpksk,
)?;

assert_eq!(output_cbs_vp_ct_mut_view.lwe_ciphertext_count().0, 1);
assert_eq!(
    output_cbs_vp_ct_mut_view.lwe_dimension(),
    LweDimension(glwe_dimension.0 * polynomial_size.0)
);
Unsafely performs the circuit bootstrapping on all boolean input LWE ciphertexts followed by vertical packing using the provided look-up table. Read more
Returns the input LWE dimension of the keys.
Returns the output GLWE dimension of the keys.
Returns the output polynomial degree of the keys.
Returns the number of decomposition levels of the keys.
Returns the logarithm of the base used in the keys.
Returns the number of keys contained in the vector.
Example:
use concrete_core::prelude::Variance;
use concrete_core::prelude::{
    DecompositionBaseLog, DecompositionLevelCount, LweDimension, GlweDimension,FunctionalPackingKeyswitchKeyCount
};
use concrete_core::prelude::*;

// DISCLAIMER: the parameters used here are only for test purpose, and are not secure.
let input_lwe_dimension = LweDimension(10);
let output_glwe_dimension = GlweDimension(3);
let polynomial_size = PolynomialSize(256);
let decomposition_base_log = DecompositionBaseLog(3);
let decomposition_level_count = DecompositionLevelCount(5);
let noise = Variance(2_f64.powf(-25.));

// Unix seeder must be given a secret input.
// Here we just give it 0, which is totally unsafe.
const UNSAFE_SECRET: u128 = 0;
let mut engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let input_key: LweSecretKey64 = engine.generate_new_lwe_secret_key(input_lwe_dimension)?;
let output_key: GlweSecretKey64 = engine.generate_new_glwe_secret_key(output_glwe_dimension,
polynomial_size)?;

let cbs_private_functional_packing_keyswitch_key:
    LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 =
    engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &input_key,
        &output_key,
        decomposition_base_log,
        decomposition_level_count,
        noise,
)?;
assert_eq!(
assert_eq!(
assert_eq!(cbs_private_functional_packing_keyswitch_key.input_lwe_dimension(),
input_lwe_dimension);
assert_eq!(cbs_private_functional_packing_keyswitch_key.output_glwe_dimension(),
output_glwe_dimension);
assert_eq!(cbs_private_functional_packing_keyswitch_key.key_count().0,
output_glwe_dimension.to_glwe_size().0);
Unsafely generate a new LWE CBSFPKSK. Read more
Example:
use concrete_core::prelude::Variance;
use concrete_core::prelude::{
    DecompositionBaseLog, DecompositionLevelCount, LweDimension, GlweDimension,FunctionalPackingKeyswitchKeyCount
};
use concrete_core::prelude::*;

// DISCLAIMER: the parameters used here are only for test purpose, and are not secure.
let input_lwe_dimension = LweDimension(10);
let output_glwe_dimension = GlweDimension(3);
let polynomial_size = PolynomialSize(256);
let decomposition_base_log = DecompositionBaseLog(3);
let decomposition_level_count = DecompositionLevelCount(5);
let noise = Variance(2_f64.powf(-25.));

// Unix seeder must be given a secret input.
// Here we just give it 0, which is totally unsafe.
const UNSAFE_SECRET: u128 = 0;
let mut default_engine = DefaultEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let mut default_parallel_engine =
    DefaultParallelEngine::new(Box::new(UnixSeeder::new(UNSAFE_SECRET)))?;
let input_key: LweSecretKey64 = default_engine.generate_new_lwe_secret_key(input_lwe_dimension)?;
let output_key: GlweSecretKey64 = default_engine.generate_new_glwe_secret_key(output_glwe_dimension,
polynomial_size)?;

let cbs_private_functional_packing_keyswitch_key:
    LweCircuitBootstrapPrivateFunctionalPackingKeyswitchKeys64 =
    default_engine
    .generate_new_lwe_circuit_bootstrap_private_functional_packing_keyswitch_keys(
        &input_key,
        &output_key,
        decomposition_base_log,
        decomposition_level_count,
        noise,
)?;
assert_eq!(
assert_eq!(
assert_eq!(cbs_private_functional_packing_keyswitch_key.input_lwe_dimension(),
input_lwe_dimension);
assert_eq!(cbs_private_functional_packing_keyswitch_key.output_glwe_dimension(),
output_glwe_dimension);
assert_eq!(cbs_private_functional_packing_keyswitch_key.key_count().0,
output_glwe_dimension.to_glwe_size().0);
Unsafely generate a new LWE CBSFPKSK. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.