pub struct NormalInverseGaussian<F>{ /* private fields */ }Expand description
The normal-inverse Gaussian distribution NIG(α, β).
This is a continuous probability distribution with two parameters,
α (alpha) and β (beta), defined in (-∞, ∞).
It is also known as the normal-Wald distribution.
§Plot
The following plot shows the normal-inverse Gaussian distribution with various values of α and β.
§Example
use rand_distr::{NormalInverseGaussian, Distribution};
let norm_inv_gauss = NormalInverseGaussian::new(2.0, 1.0).unwrap();
let v = norm_inv_gauss.sample(&mut rand::rng());
println!("{} is from a normal-inverse Gaussian(2, 1) distribution", v);Implementations§
Source§impl<F> NormalInverseGaussian<F>
impl<F> NormalInverseGaussian<F>
Sourcepub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error>
pub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error>
Construct a new NormalInverseGaussian distribution with the given alpha (tail heaviness) and
beta (asymmetry) parameters.
Trait Implementations§
Source§impl<F> Clone for NormalInverseGaussian<F>
impl<F> Clone for NormalInverseGaussian<F>
Source§fn clone(&self) -> NormalInverseGaussian<F>
fn clone(&self) -> NormalInverseGaussian<F>
Returns a duplicate of the value. Read more
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<F> Debug for NormalInverseGaussian<F>
impl<F> Debug for NormalInverseGaussian<F>
Source§impl<'de, F> Deserialize<'de> for NormalInverseGaussian<F>where
F: Float + Deserialize<'de>,
StandardNormal: Distribution<F>,
StandardUniform: Distribution<F>,
impl<'de, F> Deserialize<'de> for NormalInverseGaussian<F>where
F: Float + Deserialize<'de>,
StandardNormal: Distribution<F>,
StandardUniform: Distribution<F>,
Source§fn deserialize<__D>(
__deserializer: __D,
) -> Result<NormalInverseGaussian<F>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<NormalInverseGaussian<F>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl<F> Distribution<F> for NormalInverseGaussian<F>
impl<F> Distribution<F> for NormalInverseGaussian<F>
Source§impl<F> PartialEq for NormalInverseGaussian<F>
impl<F> PartialEq for NormalInverseGaussian<F>
Source§fn eq(&self, other: &NormalInverseGaussian<F>) -> bool
fn eq(&self, other: &NormalInverseGaussian<F>) -> bool
Tests for
self and other values to be equal, and is used by ==.Source§impl<F> Serialize for NormalInverseGaussian<F>
impl<F> Serialize for NormalInverseGaussian<F>
Source§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
Serialize this value into the given Serde serializer. Read more
impl<F> Copy for NormalInverseGaussian<F>
impl<F> StructuralPartialEq for NormalInverseGaussian<F>
Auto Trait Implementations§
impl<F> Freeze for NormalInverseGaussian<F>where
F: Freeze,
impl<F> RefUnwindSafe for NormalInverseGaussian<F>where
F: RefUnwindSafe,
impl<F> Send for NormalInverseGaussian<F>where
F: Send,
impl<F> Sync for NormalInverseGaussian<F>where
F: Sync,
impl<F> Unpin for NormalInverseGaussian<F>where
F: Unpin,
impl<F> UnwindSafe for NormalInverseGaussian<F>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more