1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
//! [](https://github.com/XiangpengHao/con-art-rust/actions/workflows/ci.yml)
//! [](
//! https://crates.io/crates/con-art-rust)
//! [](https://deps.rs/crate/con-art-rust/0.1.8)
//! [](https://codecov.io/gh/XiangpengHao/con-art-rust)
//!
//! A Rust implementation of ART-OLC [concurrent adaptive radix tree](https://db.in.tum.de/~leis/papers/artsync.pdf).
//! It implements the optimistic lock coupling with proper SIMD support.
//!
//! The code is based on its [C++ implementation](https://github.com/flode/ARTSynchronized), with many bug fixes.
//!
//! It only supports (and is optimized for) 8 byte key;
//! due to this specialization, this ART has great performance -- basic operations are ~40% faster than [flurry](https://github.com/jonhoo/flurry) hash table, range scan is an order of magnitude faster.
//!
//! The code is extensively tested with [{address|leak} sanitizer](https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html) as well as [libfuzzer](https://llvm.org/docs/LibFuzzer.html).
//!
//! ### Why this library?
//! - Fast performance, faster than most hash tables.
//! - Concurrent, super scalable, it support 150Mop/s on 32 cores.
//! - Super low memory consumption. Hash tables often have exponential bucket size growth, which often lead to low load factors. ART is more space efficient.
//!
//!
//! ### Why not this library?
//! - Not for arbitrary key size. This library only supports 8 byte key.
//! - The value must be a valid, user-space, 64 bit pointer, aka non-null and zeros on 48-63 bits.
//! - Not for sparse keys. ART is optimized for dense keys, if your keys are sparse, you should consider a hashtable.
//!
//! ### Example:
//! ```
//! use con_art_rust::Art;
//! let art = Art::new();
//! let guard = art.pin(); // enter an epoch
//!
//! art.insert(0, 42, &guard); // insert a value
//! let val = art.get(&0, &guard).unwrap(); // read the value
//! assert_eq!(val, 42);
//!
//! let mut scan_buffer = vec![0; 8];
//! let scan_result = art.range(&0, &10, &mut scan_buffer, &guard); // scan values
//! assert_eq!(scan_result.unwrap(), 1);
//! ```
#![feature(core_intrinsics)]
#![allow(clippy::comparison_chain)]
#![allow(clippy::enum_variant_names)]
#![allow(clippy::len_without_is_empty)]
#![allow(clippy::collapsible_if)]
mod base_node;
mod child_ptr;
mod key;
mod lock;
mod node_16;
mod node_256;
mod node_4;
mod node_48;
mod tree;
mod utils;
mod range_scan;
#[cfg(test)]
mod tests;
use crossbeam_epoch as epoch;
pub use key::RawKey;
use key::UsizeKey;
pub use tree::RawTree as RawArt;
pub struct Art {
inner: RawArt<UsizeKey>,
}
impl Default for Art {
fn default() -> Self {
Self::new()
}
}
impl Art {
/// Returns a copy of the value corresponding to the key.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// let guard = tree.pin();
///
/// tree.insert(1, 42, &guard);
/// assert_eq!(tree.get(&1, &guard).unwrap(), 42);
/// ```
#[inline]
pub fn get(&self, key: &usize, guard: &epoch::Guard) -> Option<usize> {
let key = UsizeKey::key_from(*key);
self.inner.get(&key, guard)
}
/// Enters an epoch.
/// Note: this can be expensive, try to reuse it.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// let guard = tree.pin();
/// ```
#[inline]
pub fn pin(&self) -> epoch::Guard {
crossbeam_epoch::pin()
}
/// Create an empty `ART` tree.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// ```
#[inline]
pub fn new() -> Self {
Art {
inner: RawArt::new(),
}
}
/// Removes key-value pair from the tree.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// let guard = tree.pin();
///
/// tree.insert(1, 42, &guard);
/// tree.remove(&1, &guard);
/// assert!(tree.get(&1, &guard).is_none());
/// ```
#[inline]
pub fn remove(&self, k: &usize, guard: &epoch::Guard) {
let key = UsizeKey::key_from(*k);
self.inner.remove(&key, guard)
}
/// Insert a key-value pair to the tree.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// let guard = tree.pin();
///
/// tree.insert(1, 42, &guard);
/// assert_eq!(tree.get(&1, &guard).unwrap(), 42);
/// ```
#[inline]
pub fn insert(&self, k: usize, v: usize, guard: &epoch::Guard) {
let key = UsizeKey::key_from(k);
self.inner.insert(key, v, guard)
}
/// Scan the tree with the range of [start, end], write the result to the
/// `result` buffer.
/// It scans the length of `result` or the number of the keys within the range, whichever is smaller;
/// returns the number of the keys scanned.
///
/// # Examples
///
/// ```
/// use con_art_rust::Art;
/// let tree = Art::new();
/// let guard = tree.pin();
///
/// tree.insert(1, 42, &guard);
///
/// let low_key = 1;
/// let high_key = 2;
/// let mut result = [0; 2];
/// let scanned = tree.range(&low_key, &high_key, &mut result, &guard);
/// assert_eq!(scanned.unwrap(), 1);
/// assert_eq!(result, [42, 0]);
/// ```
#[inline]
pub fn range(
&self,
start: &usize,
end: &usize,
result: &mut [usize],
guard: &epoch::Guard,
) -> Option<usize> {
let start = UsizeKey::key_from(*start);
let end = UsizeKey::key_from(*end);
self.inner.range(&start, &end, result, guard)
}
}