pub struct Kmeans<T> { /* private fields */ }Expand description
Clustering via the k-means algorithm (aka Lloyd’s algorithm).
k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.wikipedia
This is a heuristic, iterative approximation to the true optimal
assignment. The parameters used to control the approximation can
be set via KmeansBuilder.
§Examples
use cogset::{Euclid, Kmeans};
let data = [Euclid([0.0, 0.0]),
Euclid([1.0, 0.5]),
Euclid([0.2, 0.2]),
Euclid([0.3, 0.8]),
Euclid([0.0, 1.0])];
let k = 3;
let kmeans = Kmeans::new(&data, k);
println!("{:?}", kmeans.clusters());Implementations§
Source§impl<T> Kmeans<T>
impl<T> Kmeans<T>
Sourcepub fn new(data: &[Euclid<T>], k: usize) -> Kmeans<T>
pub fn new(data: &[Euclid<T>], k: usize) -> Kmeans<T>
Run k-means on data with the default settings.
Auto Trait Implementations§
impl<T> Freeze for Kmeans<T>
impl<T> RefUnwindSafe for Kmeans<T>where
T: RefUnwindSafe,
impl<T> Send for Kmeans<T>where
T: Send,
impl<T> Sync for Kmeans<T>where
T: Sync,
impl<T> Unpin for Kmeans<T>where
T: Unpin,
impl<T> UnwindSafe for Kmeans<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more