Dbscan

Struct Dbscan 

Source
pub struct Dbscan<P: RegionQuery + ListPoints>
where P::Point: Hash + Eq + Clone,
{ /* private fields */ }
Expand description

Clustering via the DBSCAN algorithm[1].

[DBSCAN] is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away).wikipedia

An instance of Dbscan is an iterator over clusters of P. Points classified as noise once all clusters are found are available via noise_points.

This uses the P::Point yielded by the iterators provided by ListPoints and RegionQuery as a unique identifier for each point. The algorithm will behave strangely if the identifier is not unique or not stable within a given execution of DBSCAN. The identifier is cloned several times in the course of execution, so it should be cheap to duplicate (e.g. a usize index, or a &T reference).

[1]: Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, Usama M., eds. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231.

§Examples

A basic example:

use cogset::{Dbscan, BruteScan, Euclid};

let points = [Euclid([0.1]), Euclid([0.2]), Euclid([1.0])];

let scanner = BruteScan::new(&points);
let mut dbscan = Dbscan::new(scanner, 0.2, 2);

// get the clusters themselves
let clusters = dbscan.by_ref().collect::<Vec<_>>();
// the first two points are the only cluster
assert_eq!(clusters, &[&[0, 1]]);

// now the noise
let noise = dbscan.noise_points();
// which is just the last point
assert_eq!(noise.iter().cloned().collect::<Vec<_>>(),
           &[2]);

A more complicated example that renders the output nicely:

use std::str;
use cogset::{Dbscan, BruteScan, Euclid};

fn write_points<I>(output: &mut [u8; 76], byte: u8, it: I)
    where I: Iterator<Item = Euclid<[f64; 1]>>
{
    for p in it { output[(p.0[0] * 30.0) as usize] = byte; }
}

// the points we're going to cluster, considered as points in ℝ
// with the conventional distance.
let points = [Euclid([0.25]), Euclid([0.9]), Euclid([2.0]), Euclid([1.2]),
              Euclid([1.9]), Euclid([1.1]),  Euclid([1.35]), Euclid([1.85]),
              Euclid([1.05]), Euclid([0.1]), Euclid([2.5]), Euclid([0.05]),
              Euclid([0.6]), Euclid([0.55]), Euclid([1.6])];

// print the points before clustering
let mut original = [b' '; 76];
write_points(&mut original, b'x', points.iter().cloned());
println!("{}", str::from_utf8(&original).unwrap());

// set-up the data structure that will manage the queries that
// Dbscan needs to do.
let scanner = BruteScan::new(&points);

// create the clusterer: we need 3 points to consider a group a
// cluster, and we're only looking at points 0.2 units apart.
let min_points = 3;
let epsilon = 0.2;
let mut dbscan = Dbscan::new(scanner, epsilon, min_points);

let mut clustered = [b' '; 76];

// run over all the clusters, writing each to the output
for (i, cluster) in dbscan.by_ref().enumerate() {
    // since we used `BruteScan`, `cluster` is a vector of indices
    // into `points`, not the points themselves, so lets map back
    // to the points.
    let actual_points = cluster.iter().map(|idx| points[*idx]);

    write_points(&mut clustered, b'0' + i as u8,
                 actual_points)
}
// now run over the noise points, i.e. points that aren't close
// enough to others to be in a cluster.
let noise = dbscan.noise_points();
write_points(&mut clustered, b'.',
             noise.iter().map(|idx| points[*idx]));

// print the numbered clusters
println!("{}", str::from_utf8(&clustered).unwrap());

Output:

 x x   x        x x        x   x x  x   x       x      x x  x              x
 0 0   0        . .        2   2 2  2   2       .      1 1  1              .

Implementations§

Source§

impl<P: RegionQuery + ListPoints> Dbscan<P>
where P::Point: Hash + Eq + Clone,

Source

pub fn new(points: P, eps: f64, min_points: usize) -> Dbscan<P>

Create a new DBSCAN instance, with the given eps and min_points.

eps is the maximum distance between points when creating neighbours to construct clusters. min_points is the minimum of points for a cluster.

This does not perform any significant computation immediately; clusters are found on the fly via the Iterator instance.

Source

pub fn noise_points(&self) -> &HashSet<P::Point>

Points that have been classified as noise once the algorithm finishes.

This only makes sense to call once the iterator is exhausted, and will give unspecified nonsense if called earlier.

Trait Implementations§

Source§

impl<P: RegionQuery + ListPoints> Iterator for Dbscan<P>
where P::Point: Hash + Eq + Clone,

Source§

type Item = Vec<<P as Points>::Point>

The type of the elements being iterated over.
Source§

fn next(&mut self) -> Option<Vec<P::Point>>

Advances the iterator and returns the next value. Read more
Source§

fn next_chunk<const N: usize>( &mut self, ) -> Result<[Self::Item; N], IntoIter<Self::Item, N>>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_next_chunk)
Advances the iterator and returns an array containing the next N values. Read more
1.0.0 · Source§

fn size_hint(&self) -> (usize, Option<usize>)

Returns the bounds on the remaining length of the iterator. Read more
1.0.0 · Source§

fn count(self) -> usize
where Self: Sized,

Consumes the iterator, counting the number of iterations and returning it. Read more
1.0.0 · Source§

fn last(self) -> Option<Self::Item>
where Self: Sized,

Consumes the iterator, returning the last element. Read more
Source§

fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>

🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator by n elements. Read more
1.0.0 · Source§

fn nth(&mut self, n: usize) -> Option<Self::Item>

Returns the nth element of the iterator. Read more
1.28.0 · Source§

fn step_by(self, step: usize) -> StepBy<Self>
where Self: Sized,

Creates an iterator starting at the same point, but stepping by the given amount at each iteration. Read more
1.0.0 · Source§

fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator<Item = Self::Item>,

Takes two iterators and creates a new iterator over both in sequence. Read more
1.0.0 · Source§

fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator,

‘Zips up’ two iterators into a single iterator of pairs. Read more
Source§

fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where Self: Sized, Self::Item: Clone,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places a copy of separator between adjacent items of the original iterator. Read more
Source§

fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
where Self: Sized, G: FnMut() -> Self::Item,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places an item generated by separator between adjacent items of the original iterator. Read more
1.0.0 · Source§

fn map<B, F>(self, f: F) -> Map<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> B,

Takes a closure and creates an iterator which calls that closure on each element. Read more
1.21.0 · Source§

fn for_each<F>(self, f: F)
where Self: Sized, F: FnMut(Self::Item),

Calls a closure on each element of an iterator. Read more
1.0.0 · Source§

fn filter<P>(self, predicate: P) -> Filter<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator which uses a closure to determine if an element should be yielded. Read more
1.0.0 · Source§

fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both filters and maps. Read more
1.0.0 · Source§

fn enumerate(self) -> Enumerate<Self>
where Self: Sized,

Creates an iterator which gives the current iteration count as well as the next value. Read more
1.0.0 · Source§

fn peekable(self) -> Peekable<Self>
where Self: Sized,

Creates an iterator which can use the peek and peek_mut methods to look at the next element of the iterator without consuming it. See their documentation for more information. Read more
1.0.0 · Source§

fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that skips elements based on a predicate. Read more
1.0.0 · Source§

fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that yields elements based on a predicate. Read more
1.57.0 · Source§

fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where Self: Sized, P: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both yields elements based on a predicate and maps. Read more
1.0.0 · Source§

fn skip(self, n: usize) -> Skip<Self>
where Self: Sized,

Creates an iterator that skips the first n elements. Read more
1.0.0 · Source§

fn take(self, n: usize) -> Take<Self>
where Self: Sized,

Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner. Read more
1.0.0 · Source§

fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>,

An iterator adapter which, like fold, holds internal state, but unlike fold, produces a new iterator. Read more
1.0.0 · Source§

fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U,

Creates an iterator that works like map, but flattens nested structure. Read more
1.29.0 · Source§

fn flatten(self) -> Flatten<Self>
where Self: Sized, Self::Item: IntoIterator,

Creates an iterator that flattens nested structure. Read more
Source§

fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
where Self: Sized, F: FnMut(&[Self::Item; N]) -> R,

🔬This is a nightly-only experimental API. (iter_map_windows)
Calls the given function f for each contiguous window of size N over self and returns an iterator over the outputs of f. Like slice::windows(), the windows during mapping overlap as well. Read more
1.0.0 · Source§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Creates an iterator which ends after the first None. Read more
1.0.0 · Source§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where Self: Sized, F: FnMut(&Self::Item),

Does something with each element of an iterator, passing the value on. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Iterator. Read more
1.0.0 · Source§

fn collect<B>(self) -> B
where B: FromIterator<Self::Item>, Self: Sized,

Transforms an iterator into a collection. Read more
Source§

fn try_collect<B>( &mut self, ) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
where Self: Sized, Self::Item: Try, <Self::Item as Try>::Residual: Residual<B>, B: FromIterator<<Self::Item as Try>::Output>,

🔬This is a nightly-only experimental API. (iterator_try_collect)
Fallibly transforms an iterator into a collection, short circuiting if a failure is encountered. Read more
Source§

fn collect_into<E>(self, collection: &mut E) -> &mut E
where E: Extend<Self::Item>, Self: Sized,

🔬This is a nightly-only experimental API. (iter_collect_into)
Collects all the items from an iterator into a collection. Read more
1.0.0 · Source§

fn partition<B, F>(self, f: F) -> (B, B)
where Self: Sized, B: Default + Extend<Self::Item>, F: FnMut(&Self::Item) -> bool,

Consumes an iterator, creating two collections from it. Read more
Source§

fn is_partitioned<P>(self, predicate: P) -> bool
where Self: Sized, P: FnMut(Self::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_is_partitioned)
Checks if the elements of this iterator are partitioned according to the given predicate, such that all those that return true precede all those that return false. Read more
1.27.0 · Source§

fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Output = B>,

An iterator method that applies a function as long as it returns successfully, producing a single, final value. Read more
1.27.0 · Source§

fn try_for_each<F, R>(&mut self, f: F) -> R
where Self: Sized, F: FnMut(Self::Item) -> R, R: Try<Output = ()>,

An iterator method that applies a fallible function to each item in the iterator, stopping at the first error and returning that error. Read more
1.0.0 · Source§

fn fold<B, F>(self, init: B, f: F) -> B
where Self: Sized, F: FnMut(B, Self::Item) -> B,

Folds every element into an accumulator by applying an operation, returning the final result. Read more
1.51.0 · Source§

fn reduce<F>(self, f: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(Self::Item, Self::Item) -> Self::Item,

Reduces the elements to a single one, by repeatedly applying a reducing operation. Read more
Source§

fn try_reduce<R>( &mut self, f: impl FnMut(Self::Item, Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
where Self: Sized, R: Try<Output = Self::Item>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (iterator_try_reduce)
Reduces the elements to a single one by repeatedly applying a reducing operation. If the closure returns a failure, the failure is propagated back to the caller immediately. Read more
1.0.0 · Source§

fn all<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if every element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn any<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if any element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Searches for an element of an iterator that satisfies a predicate. Read more
1.30.0 · Source§

fn find_map<B, F>(&mut self, f: F) -> Option<B>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Applies function to the elements of iterator and returns the first non-none result. Read more
Source§

fn try_find<R>( &mut self, f: impl FnMut(&Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
where Self: Sized, R: Try<Output = bool>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (try_find)
Applies function to the elements of iterator and returns the first true result or the first error. Read more
1.0.0 · Source§

fn position<P>(&mut self, predicate: P) -> Option<usize>
where Self: Sized, P: FnMut(Self::Item) -> bool,

Searches for an element in an iterator, returning its index. Read more
1.0.0 · Source§

fn max(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the maximum element of an iterator. Read more
1.0.0 · Source§

fn min(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the minimum element of an iterator. Read more
1.6.0 · Source§

fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the maximum value from the specified function. Read more
1.15.0 · Source§

fn max_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the maximum value with respect to the specified comparison function. Read more
1.6.0 · Source§

fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the minimum value from the specified function. Read more
1.15.0 · Source§

fn min_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the minimum value with respect to the specified comparison function. Read more
1.0.0 · Source§

fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Iterator<Item = (A, B)>,

Converts an iterator of pairs into a pair of containers. Read more
1.36.0 · Source§

fn copied<'a, T>(self) -> Copied<Self>
where T: Copy + 'a, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which copies all of its elements. Read more
1.0.0 · Source§

fn cloned<'a, T>(self) -> Cloned<Self>
where T: Clone + 'a, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which clones all of its elements. Read more
Source§

fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_array_chunks)
Returns an iterator over N elements of the iterator at a time. Read more
1.11.0 · Source§

fn sum<S>(self) -> S
where Self: Sized, S: Sum<Self::Item>,

Sums the elements of an iterator. Read more
1.11.0 · Source§

fn product<P>(self) -> P
where Self: Sized, P: Product<Self::Item>,

Iterates over the entire iterator, multiplying all the elements Read more
1.5.0 · Source§

fn cmp<I>(self, other: I) -> Ordering
where I: IntoIterator<Item = Self::Item>, Self::Item: Ord, Self: Sized,

Lexicographically compares the elements of this Iterator with those of another. Read more
Source§

fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Lexicographically compares the PartialOrd elements of this Iterator with those of another. The comparison works like short-circuit evaluation, returning a result without comparing the remaining elements. As soon as an order can be determined, the evaluation stops and a result is returned. Read more
Source§

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn eq<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are equal to those of another. Read more
Source§

fn eq_by<I, F>(self, other: I, eq: F) -> bool
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_order_by)
Determines if the elements of this Iterator are equal to those of another with respect to the specified equality function. Read more
1.5.0 · Source§

fn ne<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are not equal to those of another. Read more
1.5.0 · Source§

fn lt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less than those of another. Read more
1.5.0 · Source§

fn le<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less or equal to those of another. Read more
1.5.0 · Source§

fn gt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than those of another. Read more
1.5.0 · Source§

fn ge<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than or equal to those of another. Read more
1.82.0 · Source§

fn is_sorted(self) -> bool
where Self: Sized, Self::Item: PartialOrd,

Checks if the elements of this iterator are sorted. Read more
1.82.0 · Source§

fn is_sorted_by<F>(self, compare: F) -> bool
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> bool,

Checks if the elements of this iterator are sorted using the given comparator function. Read more
1.82.0 · Source§

fn is_sorted_by_key<F, K>(self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> K, K: PartialOrd,

Checks if the elements of this iterator are sorted using the given key extraction function. Read more

Auto Trait Implementations§

§

impl<P> Freeze for Dbscan<P>
where <P as Points>::Point: Sized, P: Freeze, <P as ListPoints>::AllPoints: Freeze,

§

impl<P> RefUnwindSafe for Dbscan<P>

§

impl<P> Send for Dbscan<P>
where <P as Points>::Point: Sized + Send, P: Send, <P as ListPoints>::AllPoints: Send,

§

impl<P> Sync for Dbscan<P>
where <P as Points>::Point: Sized + Sync, P: Sync, <P as ListPoints>::AllPoints: Sync,

§

impl<P> Unpin for Dbscan<P>
where <P as Points>::Point: Sized + Unpin, P: Unpin, <P as ListPoints>::AllPoints: Unpin,

§

impl<P> UnwindSafe for Dbscan<P>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<I> IntoIterator for I
where I: Iterator,

Source§

type Item = <I as Iterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = I

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> I

Creates an iterator from a value. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.