pub enum CurrencyCode {
Show 304 variants
ADP,
AED,
AFA,
AFN,
ALK,
ALL,
AMD,
ANG,
AOA,
AOK,
AON,
AOR,
ARA,
ARP,
ARS,
ARY,
ATS,
AUD,
AWG,
AYM,
AZM,
AZN,
BAD,
BAM,
BBD,
BDT,
BEC,
BEF,
BEL,
BGJ,
BGK,
BGL,
BGN,
BHD,
BIF,
BMD,
BND,
BOB,
BOP,
BOV,
BRB,
BRC,
BRE,
BRL,
BRN,
BRR,
BSD,
BTN,
BUK,
BWP,
BYB,
BYN,
BYR,
BZD,
CAD,
CDF,
CHC,
CHE,
CHF,
CHW,
CLF,
CLP,
CNY,
COP,
COU,
CRC,
CSD,
CSJ,
CSK,
CUC,
CUP,
CVE,
CYP,
CZK,
DDM,
DEM,
DJF,
DKK,
DOP,
DZD,
ECS,
ECV,
EEK,
EGP,
ERN,
ESA,
ESB,
ESP,
ETB,
EUR,
FIM,
FJD,
FKP,
FRF,
GBP,
GEK,
GEL,
GHC,
GHP,
GHS,
GIP,
GMD,
GNE,
GNF,
GNS,
GQE,
GRD,
GTQ,
GWE,
GWP,
GYD,
HKD,
HNL,
HRD,
HRK,
HTG,
HUF,
IDR,
IEP,
ILP,
ILR,
ILS,
INR,
IQD,
IRR,
ISJ,
ISK,
ITL,
JMD,
JOD,
JPY,
KES,
KGS,
KHR,
KMF,
KPW,
KRW,
KWD,
KYD,
KZT,
LAJ,
LAK,
LBP,
LKR,
LRD,
LSL,
LSM,
LTL,
LTT,
LUC,
LUF,
LUL,
LVL,
LVR,
LYD,
MAD,
MDL,
MGA,
MGF,
MKD,
MLF,
MMK,
MNT,
MOP,
MRO,
MRU,
MTL,
MTP,
MUR,
MVQ,
MVR,
MWK,
MXN,
MXP,
MXV,
MYR,
MZE,
MZM,
MZN,
NAD,
NGN,
NIC,
NIO,
NLG,
NOK,
NPR,
NZD,
OMR,
PAB,
PEH,
PEI,
PEN,
PES,
PGK,
PHP,
PKR,
PLN,
PLZ,
PTE,
PYG,
QAR,
RHD,
ROK,
ROL,
RON,
RSD,
RUB,
RUR,
RWF,
SAR,
SBD,
SCR,
SDD,
SDG,
SDP,
SEK,
SGD,
SHP,
SIT,
SKK,
SLE,
SLL,
SOS,
SRD,
SRG,
SSP,
STD,
STN,
SUR,
SVC,
SYP,
SZL,
THB,
TJR,
TJS,
TMM,
TMT,
TND,
TOP,
TPE,
TRL,
TRY,
TTD,
TWD,
TZS,
UAH,
UAK,
UGS,
UGW,
UGX,
USD,
USN,
USS,
UYI,
UYN,
UYP,
UYU,
UYW,
UZS,
VEB,
VED,
VEF,
VES,
VNC,
VND,
VUV,
WST,
XAF,
XAG,
XAU,
XBA,
XBB,
XBC,
XBD,
XCD,
XDR,
XEU,
XFO,
XFU,
XOF,
XPD,
XPF,
XPT,
XRE,
XSU,
XTS,
XUA,
XXX,
YDD,
YER,
YUD,
YUM,
YUN,
ZAL,
ZAR,
ZMK,
ZMW,
ZRN,
ZRZ,
ZWC,
ZWD,
ZWL,
ZWN,
ZWR,
}Expand description
This type represents The codes defined in the ISO 4127 standard and the implementations included are generated from ISO’s own public data files.
The choice to model the actual codes as an enum allows for a compact
representation for storage with additional properties from the
specification added as methods. Most methods are feature-gated so that by
default only the alphabetic and numeric codes are available.
See more at iso.org.
Variants§
ADP
Andorran Peseta
AED
UAE Dirham
AFA
Afghani
AFN
Afghani
ALK
Old Lek
ALL
Lek
AMD
Armenian Dram
ANG
Netherlands Antillean Guilder
AOA
Kwanza
AOK
Kwanza
AON
New Kwanza
AOR
Kwanza Reajustado
ARA
Austral
ARP
Peso Argentino
ARS
Argentine Peso
ARY
Peso
ATS
Schilling
AUD
Australian Dollar
AWG
Aruban Florin
AYM
Azerbaijan Manat
AZM
Azerbaijanian Manat
AZN
Azerbaijan Manat
BAD
Dinar
BAM
Convertible Mark
BBD
Barbados Dollar
BDT
Taka
BEC
Convertible Franc
BEF
Belgian Franc
BEL
Financial Franc
BGJ
Lev A/52
BGK
Lev A/62
BGL
Lev
BGN
Bulgarian Lev
BHD
Bahraini Dinar
BIF
Burundi Franc
BMD
Bermudian Dollar
BND
Brunei Dollar
BOB
Boliviano
BOP
Peso boliviano
BOV
Mvdol
BRB
Cruzeiro
BRC
Cruzado
BRE
Cruzeiro
BRL
Brazilian Real
BRN
New Cruzado
BRR
Cruzeiro Real
BSD
Bahamian Dollar
BTN
Ngultrum
BUK
Kyat
BWP
Pula
BYB
Belarusian Ruble
BYN
Belarusian Ruble
BYR
Belarusian Ruble
BZD
Belize Dollar
CAD
Canadian Dollar
CDF
Congolese Franc
CHC
WIR Franc (for electronic)
CHE
WIR Euro
CHF
Swiss Franc
CHW
WIR Franc
CLF
Unidad de Fomento
CLP
Chilean Peso
CNY
Yuan Renminbi
COP
Colombian Peso
COU
Unidad de Valor Real
CRC
Costa Rican Colon
CSD
Serbian Dinar
CSJ
Krona A/53
CSK
Koruna
CUC
Peso Convertible
CUP
Cuban Peso
CVE
Cabo Verde Escudo
CYP
Cyprus Pound
CZK
Czech Koruna
DDM
Mark der DDR
DEM
Deutsche Mark
DJF
Djibouti Franc
DKK
Danish Krone
DOP
Dominican Peso
DZD
Algerian Dinar
ECS
Sucre
ECV
Unidad de Valor Constante (UVC)
EEK
Kroon
EGP
Egyptian Pound
ERN
Nakfa
ESA
Spanish Peseta
ESB
"A" Account (convertible Peseta Account)
ESP
Spanish Peseta
ETB
Ethiopian Birr
EUR
Euro
FIM
Markka
FJD
Fiji Dollar
FKP
Falkland Islands Pound
FRF
French Franc
GBP
Pound Sterling
GEK
Georgian Coupon
GEL
Lari
GHC
Cedi
GHP
Ghana Cedi
GHS
Ghana Cedi
GIP
Gibraltar Pound
GMD
Dalasi
GNE
Syli
GNF
Guinean Franc
GNS
Syli
GQE
Ekwele
GRD
Drachma
GTQ
Quetzal
GWE
Guinea Escudo
GWP
Guinea-Bissau Peso
GYD
Guyana Dollar
HKD
Hong Kong Dollar
HNL
Lempira
HRD
Croatian Dinar
HRK
Croatian Kuna
HTG
Gourde
HUF
Forint
IDR
Rupiah
IEP
Irish Pound
ILP
Pound
ILR
Old Shekel
ILS
New Israeli Sheqel
INR
Indian Rupee
IQD
Iraqi Dinar
IRR
Iranian Rial
ISJ
Old Krona
ISK
Iceland Krona
ITL
Italian Lira
JMD
Jamaican Dollar
JOD
Jordanian Dinar
JPY
Yen
KES
Kenyan Shilling
KGS
Som
KHR
Riel
KMF
Comorian Franc
KPW
North Korean Won
KRW
Won
KWD
Kuwaiti Dinar
KYD
Cayman Islands Dollar
KZT
Tenge
LAJ
Pathet Lao Kip
LAK
Lao Kip
LBP
Lebanese Pound
LKR
Sri Lanka Rupee
LRD
Liberian Dollar
LSL
Loti
LSM
Loti
LTL
Lithuanian Litas
LTT
Talonas
LUC
Luxembourg Convertible Franc
LUF
Luxembourg Franc
LUL
Luxembourg Financial Franc
LVL
Latvian Lats
LVR
Latvian Ruble
LYD
Libyan Dinar
MAD
Moroccan Dirham
MDL
Moldovan Leu
MGA
Malagasy Ariary
MGF
Malagasy Franc
MKD
Denar
MLF
Mali Franc
MMK
Kyat
MNT
Tugrik
MOP
Pataca
MRO
Ouguiya
MRU
Ouguiya
MTL
Maltese Lira
MTP
Maltese Pound
MUR
Mauritius Rupee
MVQ
Maldive Rupee
MVR
Rufiyaa
MWK
Kwacha
MXN
Mexican Peso
MXP
Mexican Peso
MXV
Mexican Unidad de Inversion (UDI)
MYR
Malaysian Ringgit
MZE
Mozambique Escudo
MZM
Mozambique Metical
MZN
Mozambique Metical
NAD
Namibia Dollar
NGN
Naira
NIC
Cordoba
NIO
Cordoba Oro
NLG
Netherlands Guilder
NOK
Norwegian Krone
NPR
Nepalese Rupee
NZD
New Zealand Dollar
OMR
Rial Omani
PAB
Balboa
PEH
Sol
PEI
Inti
PEN
Nuevo Sol
PES
Sol
PGK
Kina
PHP
Philippine Peso
PKR
Pakistan Rupee
PLN
Zloty
PLZ
Zloty
PTE
Portuguese Escudo
PYG
Guarani
QAR
Qatari Rial
RHD
Rhodesian Dollar
ROK
Leu A/52
ROL
Old Leu
RON
New Romanian Leu
RSD
Serbian Dinar
RUB
Russian Ruble
RUR
Russian Ruble
RWF
Rwanda Franc
SAR
Saudi Riyal
SBD
Solomon Islands Dollar
SCR
Seychelles Rupee
SDD
Sudanese Dinar
SDG
Sudanese Pound
SDP
Sudanese Pound
SEK
Swedish Krona
SGD
Singapore Dollar
SHP
Saint Helena Pound
SIT
Tolar
SKK
Slovak Koruna
SLE
Leone
SLL
Leone
SOS
Somali Shilling
SRD
Surinam Dollar
SRG
Surinam Guilder
SSP
South Sudanese Pound
STD
Dobra
STN
Dobra
SUR
Rouble
SVC
El Salvador Colon
SYP
Syrian Pound
SZL
Lilangeni
THB
Baht
TJR
Tajik Ruble
TJS
Somoni
TMM
Turkmenistan Manat
TMT
Turkmenistan New Manat
TND
Tunisian Dinar
TOP
Pa’anga
TPE
Timor Escudo
TRL
Old Turkish Lira
TRY
New Turkish Lira
TTD
Trinidad and Tobago Dollar
TWD
New Taiwan Dollar
TZS
Tanzanian Shilling
UAH
Hryvnia
UAK
Karbovanet
UGS
Uganda Shilling
UGW
Old Shilling
UGX
Uganda Shilling
USD
US Dollar
USN
US Dollar (Next day)
USS
US Dollar (Same day)
UYI
Uruguay Peso en Unidades Indexadas (UI)
UYN
Old Uruguay Peso
UYP
Uruguayan Peso
UYU
Peso Uruguayo
UYW
Unidad Previsional
UZS
Uzbekistan Sum
VEB
Bolivar
VED
Bolívar Soberano
VEF
Bolívar
VES
Bolívar Soberano
VNC
Old Dong
VND
Dong
VUV
Vatu
WST
Tala
XAF
CFA Franc BEAC
XAG
Silver
XAU
Gold
XBA
Bond Markets Unit European Composite Unit (EURCO)
XBB
Bond Markets Unit European Monetary Unit (E.M.U.-6)
XBC
Bond Markets Unit European Unit of Account 9 (E.U.A.-9)
XBD
Bond Markets Unit European Unit of Account 17 (E.U.A.-17)
XCD
East Caribbean Dollar
XDR
SDR (Special Drawing Right)
XEU
European Currency Unit (E.C.U)
XFO
Gold-Franc
XFU
UIC-Franc
XOF
CFA Franc BCEAO
XPD
Palladium
XPF
CFP Franc
XPT
Platinum
XRE
RINET Funds Code
XSU
Sucre
XTS
Codes specifically reserved for testing purposes
XUA
ADB Unit of Account
XXX
The codes assigned for transactions where no currency is involved
YDD
Yemeni Dinar
YER
Yemeni Rial
YUD
New Yugoslavian Dinar
YUM
New Dinar
YUN
Yugoslavian Dinar
ZAL
Financial Rand
ZAR
Rand
ZMK
Zambian Kwacha
ZMW
Zambian Kwacha
ZRN
New Zaire
ZRZ
Zaire
ZWC
Rhodesian Dollar
ZWD
Zimbabwe Dollar
ZWL
Zimbabwe Dollar
ZWN
Zimbabwe Dollar (new)
ZWR
Zimbabwe Dollar
Implementations§
Source§impl CurrencyCode
impl CurrencyCode
Sourcepub fn alpha_code(&self) -> &'static str
pub fn alpha_code(&self) -> &'static str
The alphabetic code is based on another ISO standard, ISO 3166, which lists the codes for country names. The first two letters of the ISO 4217 three-letter code are the same as the code for the country name, and, where possible, the third letter corresponds to the first letter of the currency name.
For example:
- The US dollar is represented as USD – the US coming from the ISO 3166 country code and the D for dollar.
- The Swiss franc is represented by CHF – the CH being the code for Switzerland in the ISO 3166 code and F for franc.
Sourcepub fn numeric_code(&self) -> Option<u16>
pub fn numeric_code(&self) -> Option<u16>
The three-digit numeric code is useful when currency codes need to be understood in countries that do not use Latin scripts and for computerized systems. Where possible, the three-digit numeric code is the same as the numeric country code.
For currencies having minor units, ISO 4217:2015 also shows the relationship between the minor unit and the currency itself (i.e. whether it divides into 100 or 1000).
ISO 4217:2015 also describes historical codes in List 3, as well as the codes representing certain funds in List 2.
Sourcepub fn currency_name(&self) -> &'static str
pub fn currency_name(&self) -> &'static str
Return the registered descriptive name of this code.
Sourcepub fn country_name(&self) -> &'static str
pub fn country_name(&self) -> &'static str
Return the country, or entity, that is responsible for this code.
Sourcepub fn monetary_units(&self) -> Option<u8>
pub fn monetary_units(&self) -> Option<u8>
Return the number of decimal values this code typically uses.
Sourcepub fn is_historical(&self) -> bool
pub fn is_historical(&self) -> bool
Return true if this code represents an historical code, else false.
Sourcepub fn withdrawal_date(&self) -> Option<&'static str>
pub fn withdrawal_date(&self) -> Option<&'static str>
For historical codes (where is_historical is true), return the
informal date of withdrawal.
Sourcepub fn currency_symbol_str(&self) -> Option<&'static str>
pub fn currency_symbol_str(&self) -> Option<&'static str>
If known, return the symbol, as a string, for this currency. Note that this is unlikely to ever have a value for historical codes.
Sourcepub fn currency_symbol_code_points(&self) -> Option<&[u32]>
pub fn currency_symbol_code_points(&self) -> Option<&[u32]>
If known, return the symbol, as a list of Unicode code points, for this currency. As many countries use multi-character symbols a list of points is returned. Note that this is unlikely to ever have a value for historical codes.
Methods from Deref<Target = str>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if self has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());1.9.0 · Sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()) are
considered to be boundaries.
Returns false if index is greater than self.len().
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));1.91.0 · Sourcepub fn floor_char_boundary(&self, index: usize) -> usize
pub fn floor_char_boundary(&self, index: usize) -> usize
Finds the closest x not exceeding index where is_char_boundary(x) is true.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");1.91.0 · Sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
pub fn ceil_char_boundary(&self, index: usize) -> usize
Finds the closest x not below index where is_char_boundary(x) is true.
If index is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary. See that method
for more details.
§Examples
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");1.0.0 · Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr.
§Examples
let s = "Hello";
let ptr = s.as_ptr();1.20.0 · Sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());1.20.0 · Sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str.
This is the unchecked alternative to indexing the str.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}1.0.0 · Sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end) instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end) insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str and Index.
This new slice goes from begin to end, including begin but
excluding end.
To get a mutable string slice instead, see the
slice_mut_unchecked method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
beginmust not exceedend.beginandendmust be byte positions within the string slice.beginandendmust lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}1.4.0 · Sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None if that’s not the case.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length1.0.0 · Sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the chars of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns such an iterator.
It’s important to remember that char represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());Remember, chars might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());1.0.0 · Sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the chars of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns an iterator of both
these chars, as well as their byte positions.
The iterator yields tuples. The position is first, the char is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());Remember, chars might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());1.0.0 · Sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());1.1.0 · Sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);1.34.0 · Sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
This uses the same definition as char::is_ascii_whitespace.
To split by Unicode Whitespace instead, use split_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());Various kinds of ASCII whitespace are considered
(see char::is_ascii_whitespace):
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);1.0.0 · Sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n) or
sequences of a carriage return followed by a line feed (\r\n).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r) not immediately followed by a
line feed (\n) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());1.0.0 · Sourcepub fn lines_any(&self) -> LinesAny<'_>
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
Returns an iterator over the lines of a string.
1.8.0 · Sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16 over the string encoded
as native endian UTF-16 (without byte-order mark).
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);1.0.0 · Sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a sub-slice of
this string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));1.0.0 · Sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a prefix of this
string slice.
Returns false if it does not.
The pattern can be a &str, in which case this function will return true if
the &str is a prefix of this string slice.
The pattern can also be a char, a slice of chars, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of chars.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));1.0.0 · Sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true if the given pattern matches a suffix of this
string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));1.0.0 · Sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);1.0.0 · Sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);1.0.0 · Sourcepub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
If there are no matches the full string slice is returned as the only item in the iterator.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "AABBCC".split("DD").collect();
assert_eq!(v, ["AABBCC"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);It does not give you:
assert_eq!(d, &["a", "b", "c"]);Use split_whitespace for this behavior.
1.51.0 · Sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);1.0.0 · Sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the split method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);1.0.0 · Sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);1.0.0 · Sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
Returns an iterator over substrings of self, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);1.0.0 · Sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);1.0.0 · Sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);1.52.0 · Sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));1.52.0 · Sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));1.2.0 · Sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);1.2.0 · Sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the matches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);1.5.0 · Sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat within self that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`1.5.0 · Sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
Returns an iterator over the disjoint matches of a pattern within self,
yielded in reverse order along with the index of the match.
For matches of pat within self that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`1.0.0 · Sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());1.30.0 · Sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());1.30.0 · Sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());1.0.0 · Sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_startReturns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());1.0.0 · Sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_endReturns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());1.0.0 · Sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char, a slice of chars, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");1.30.0 · Sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");1.45.0 · Sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix, returns the substring after the prefix,
wrapped in Some. Unlike trim_start_matches, this method removes the prefix exactly once.
If the string does not start with prefix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));1.45.0 · Sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix, returns the substring before the suffix,
wrapped in Some. Unlike trim_end_matches, this method removes the suffix exactly once.
If the string does not end with suffix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));Sourcepub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
trim_prefix_suffix)Returns a string slice with the optional prefix removed.
If the string starts with the pattern prefix, returns the substring after the prefix.
Unlike strip_prefix, this method always returns &str for easy method chaining,
instead of returning Option<&str>.
If the string does not start with prefix, returns the original string unchanged.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Prefix present - removes it
assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
assert_eq!("foofoo".trim_prefix("foo"), "foo");
// Prefix absent - returns original string
assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");Sourcepub fn trim_suffix<P>(&self, suffix: P) -> &str
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_suffix<P>(&self, suffix: P) -> &str
trim_prefix_suffix)Returns a string slice with the optional suffix removed.
If the string ends with the pattern suffix, returns the substring before the suffix.
Unlike strip_suffix, this method always returns &str for easy method chaining,
instead of returning Option<&str>.
If the string does not end with suffix, returns the original string unchanged.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Suffix present - removes it
assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
assert_eq!("foofoo".trim_suffix("foo"), "foo");
// Suffix absent - returns original string
assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");1.30.0 · Sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matchesReturns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");1.0.0 · Sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matchesReturns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse is so general, it can cause problems with type
inference. As such, parse is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse can parse into any type that implements the FromStr trait.
§Errors
Will return Err if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage:
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);Using the ‘turbofish’ instead of annotating four:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char)If this string slice is_ascii, returns it as a slice
of ASCII characters, otherwise returns None.
Sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char)Converts this string slice into a slice of ASCII characters, without checking whether they are valid.
§Safety
Every character in this string must be ASCII, or else this is UB.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");1.80.0 · Sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");1.34.0 · Sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Returns an iterator that escapes each char in self with char::escape_debug.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_debug());Both are equivalent to:
println!("❤\\n!");Using to_string:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");1.34.0 · Sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Returns an iterator that escapes each char in self with char::escape_default.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_default());Both are equivalent to:
println!("\\u{{2764}}\\n!");Using to_string:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");1.34.0 · Sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Returns an iterator that escapes each char in self with char::escape_unicode.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_unicode());Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");Using to_string:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");Sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range)Returns the range that a substring points to.
Returns None if substr does not point within self.
Unlike str::find, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr is derived from.
This is useful for extending str::split and similar methods.
Note that this method may return false positives (typically either
Some(0..0) or Some(self.len()..self.len())) if substr is a
zero-length str that points at the beginning or end of another,
independent, str.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));Sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str)
pub fn as_str(&self) -> &str
str_as_str)Returns the same string as a string slice &str.
This method is redundant when used directly on &str, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str> or Arc<str>.
1.0.0 · Sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));1.16.0 · Sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count times.
§Examples
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));1.2.0 · Sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());1.2.0 · Sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());1.16.0 · Sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String by repeating a string n times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());Trait Implementations§
Source§impl AsRef<str> for CurrencyCode
impl AsRef<str> for CurrencyCode
Source§impl Clone for CurrencyCode
impl Clone for CurrencyCode
Source§fn clone(&self) -> CurrencyCode
fn clone(&self) -> CurrencyCode
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more