pub struct NaiveDateTime(pub ChronoNaiveDateTime);

Tuple Fields§

§0: ChronoNaiveDateTime

Methods from Deref<Target = ChronoNaiveDateTime>§

source

pub fn date(&self) -> NaiveDate

Retrieves a date component.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap());
source

pub fn time(&self) -> NaiveTime

Retrieves a time component.

Example
use chrono::{NaiveDate, NaiveTime};

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap());
source

pub fn timestamp(&self) -> i64

Returns the number of non-leap seconds since the midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 980).unwrap();
assert_eq!(dt.timestamp(), 1);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_opt(1, 46, 40).unwrap();
assert_eq!(dt.timestamp(), 1_000_000_000);

let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_opt(23, 59, 59).unwrap();
assert_eq!(dt.timestamp(), -1);

let dt = NaiveDate::from_ymd_opt(-1, 1, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
assert_eq!(dt.timestamp(), -62198755200);
source

pub fn timestamp_millis(&self) -> i64

Returns the number of non-leap milliseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Million. (If this is a problem, please file an issue to let me know what domain needs millisecond precision over billions of years, I’m curious.)

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_millis(), 1_444);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_milli_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);

let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_milli_opt(23, 59, 59, 100).unwrap();
assert_eq!(dt.timestamp_millis(), -900);
source

pub fn timestamp_micros(&self) -> i64

Returns the number of non-leap microseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Thousand. (If this is a problem, please file an issue to let me know what domain needs microsecond precision over millennia, I’m curious.)

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_micro_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_444);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_micro_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
source

pub fn timestamp_nanos(&self) -> i64

Returns the number of non-leap nanoseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Panics

Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 years. The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.

(If this is a problem, please file an issue to let me know what domain needs nanosecond precision over millennia, I’m curious.)

Example
use chrono::{NaiveDate, NaiveDateTime};

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_nano_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_nanos(), 1_000_000_444);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_nano_opt(1, 46, 40, 555).unwrap();

const A_BILLION: i64 = 1_000_000_000;
let nanos = dt.timestamp_nanos();
assert_eq!(nanos, 1_000_000_000_000_000_555);
assert_eq!(
    dt,
    NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
source

pub fn timestamp_subsec_millis(&self) -> u32

Returns the number of milliseconds since the last whole non-leap second.

The return value ranges from 0 to 999, or for leap seconds, to 1,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 123);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 1_234);
source

pub fn timestamp_subsec_micros(&self) -> u32

Returns the number of microseconds since the last whole non-leap second.

The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 123_456);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
source

pub fn timestamp_subsec_nanos(&self) -> u32

Returns the number of nanoseconds since the last whole non-leap second.

The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
source

pub fn and_local_timezone<Tz>(&self, tz: Tz) -> LocalResult<DateTime<Tz>>where Tz: TimeZone,

Converts the NaiveDateTime into the timezone-aware DateTime<Tz> with the provided timezone, if possible.

This can fail in cases where the local time represented by the NaiveDateTime is not a valid local timestamp in the target timezone due to an offset transition for example if the target timezone had a change from +00:00 to +01:00 occuring at 2015-09-05 22:59:59, then a local time of 2015-09-05 23:56:04 could never occur. Similarly, if the offset transitioned in the opposite direction then there would be two local times of 2015-09-05 23:56:04, one at +00:00 and one at +01:00.

Example
use chrono::{NaiveDate, Utc};
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap().and_local_timezone(Utc).unwrap();
assert_eq!(dt.timezone(), Utc);
source

pub const MIN: NaiveDateTime = Self{ date: NaiveDate::MIN, time: NaiveTime::MIN,}

source

pub const MAX: NaiveDateTime = Self{ date: NaiveDate::MAX, time: NaiveTime::MAX,}

Trait Implementations§

source§

impl Clone for NaiveDateTime

source§

fn clone(&self) -> NaiveDateTime

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for NaiveDateTime

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Deref for NaiveDateTime

§

type Target = NaiveDateTime

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl DerefMut for NaiveDateTime

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<'de> Deserialize<'de> for NaiveDateTime

source§

fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl From<NaiveDateTime> for NaiveDateTime

source§

fn from(inner: ChronoNaiveDateTime) -> Self

Converts to this type from the input type.
source§

impl FromStr for NaiveDateTime

§

type Err = ParseError

The associated error which can be returned from parsing.
source§

fn from_str(s: &str) -> Result<Self, Self::Err>

Parses a string s to return a value of this type. Read more
source§

impl PartialEq<NaiveDateTime> for NaiveDateTime

source§

fn eq(&self, other: &NaiveDateTime) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for NaiveDateTime

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,