1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
pub mod lexer;
mod parser;

use smallvec::SmallVec;

/// A predicate function, used to combine 1 or more predicates
/// into a single value
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
pub enum Func {
    /// `not()` with a configuration predicate. It is true if its predicate
    /// is false and false if its predicate is true.
    Not,
    /// `all()` with a comma separated list of configuration predicates. It
    /// is false if at least one predicate is false. If there are no predicates,
    /// it is true.
    ///
    /// The associated `usize` is the number of predicates inside the `all()`.
    All(usize),
    /// `any()` with a comma separated list of configuration predicates. It
    /// is true if at least one predicate is true. If there are no predicates,
    /// it is false.
    ///
    /// The associated `usize` is the number of predicates inside the `any()`.
    Any(usize),
}

use crate::targets as targ;

/// All predicates that pertains to a target, except for `target_feature`
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum TargetPredicate {
    /// [target_arch](https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch)
    Arch(targ::Arch),
    /// [target_endian](https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian)
    Endian(targ::Endian),
    /// [target_env](https://doc.rust-lang.org/reference/conditional-compilation.html#target_env)
    Env(Option<targ::Env>),
    /// [target_family](https://doc.rust-lang.org/reference/conditional-compilation.html#target_family)
    /// This also applies to the bare [`unix` and `windows`](https://doc.rust-lang.org/reference/conditional-compilation.html#unix-and-windows)
    /// predicates.
    Family(Option<targ::Family>),
    /// [target_os](https://doc.rust-lang.org/reference/conditional-compilation.html#target_os)
    Os(Option<targ::Os>),
    /// [target_pointer_width](https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width)
    PointerWidth(u8),
    /// [target_vendor](https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor)
    Vendor(Option<targ::Vendor>),
}

impl TargetPredicate {
    /// Returns true of the predicate matches the specified target
    ///
    /// ```
    /// use cfg_expr::{targets::*, expr::TargetPredicate as tp};
    /// let win = get_target_by_triple("x86_64-pc-windows-msvc").unwrap();
    ///
    /// assert!(
    ///     tp::Arch(Arch::x86_64).matches(win) &&
    ///     tp::Endian(Endian::little).matches(win) &&
    ///     tp::Env(Some(Env::msvc)).matches(win) &&
    ///     tp::Family(Some(Family::windows)).matches(win) &&
    ///     tp::Os(Some(Os::windows)).matches(win) &&
    ///     tp::PointerWidth(64).matches(win) &&
    ///     tp::Vendor(Some(Vendor::pc)).matches(win)
    /// );
    /// ```
    pub fn matches(self, target: &targ::TargetInfo) -> bool {
        use TargetPredicate::*;

        match self {
            Arch(a) => a == target.arch,
            Endian(end) => end == target.endian,
            Env(env) => env == target.env,
            Family(fam) => fam == target.family,
            Os(os) => os == target.os,
            PointerWidth(w) => w == target.pointer_width,
            Vendor(ven) => ven == target.vendor,
        }
    }
}

/// A single predicate in a `cfg()` expression
#[derive(Debug, PartialEq)]
pub enum Predicate<'a> {
    /// A target predicate, with the `target_` prefix
    Target(TargetPredicate),
    /// Whether rustc's test harness is [enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#test)
    Test,
    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions)
    ///  when compiling without optimizations.
    DebugAssertions,
    /// [Enabled](https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro) for
    /// crates of the proc_macro type.
    ProcMacro,
    /// A [`feature = "<name>"`](https://doc.rust-lang.org/nightly/cargo/reference/features.html)
    Feature(&'a str),
    /// [target_feature](https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature)
    TargetFeature(&'a str),
    /// A generic bare predicate key that doesn't match one of the known options, eg `cfg(bare)`
    Flag(&'a str),
    /// A generic key = "value" predicate that doesn't match one of the known options, eg `cfg(foo = "bar")`
    KeyValue { key: &'a str, val: &'a str },
}

#[derive(Clone, PartialEq, Debug)]
pub(crate) enum InnerPredicate {
    Target(TargetPredicate),
    Test,
    DebugAssertions,
    ProcMacro,
    Feature(std::ops::Range<usize>),
    TargetFeature(std::ops::Range<usize>),
    Other {
        identifier: std::ops::Range<usize>,
        value: Option<std::ops::Range<usize>>,
    },
}

impl InnerPredicate {
    fn to_pred<'a>(&self, s: &'a str) -> Predicate<'a> {
        use InnerPredicate as IP;
        use Predicate::*;

        match self {
            IP::Target(tp) => Target(*tp),
            IP::Test => Test,
            IP::DebugAssertions => DebugAssertions,
            IP::ProcMacro => ProcMacro,
            IP::Feature(rng) => Feature(&s[rng.clone()]),
            IP::TargetFeature(rng) => TargetFeature(&s[rng.clone()]),
            IP::Other { identifier, value } => match value {
                Some(vs) => KeyValue {
                    key: &s[identifier.clone()],
                    val: &s[vs.clone()],
                },
                None => Flag(&s[identifier.clone()]),
            },
        }
    }
}

#[derive(Clone, PartialEq, Debug)]
pub(crate) enum ExprNode {
    Fn(Func),
    Predicate(InnerPredicate),
}

/// A parsed `cfg()` expression that can evaluated
#[derive(Debug)]
pub struct Expression {
    pub(crate) expr: SmallVec<[ExprNode; 5]>,
    // We keep the original string around for providing the arbitrary
    // strings that can make up an expression
    pub(crate) original: String,
}

impl Expression {
    /// An iterator over each predicate in the expression
    pub fn predicates(&self) -> impl Iterator<Item = Predicate<'_>> {
        self.expr.iter().filter_map(move |item| match item {
            ExprNode::Predicate(pred) => {
                let pred = pred.clone().to_pred(&self.original);
                Some(pred)
            }
            _ => None,
        })
    }

    /// Evaluates the expression, using the provided closure to determine the value of
    /// each predicate, which are then combined into a final result depending on the
    /// functions not(), all(), or any() in the expression.
    ///
    /// `eval_predicate` typically returns `bool`, but may return any type that implements
    /// the `Logic` trait.
    ///
    /// ## Examples
    ///
    /// ```
    /// use cfg_expr::{targets::*, Expression, Predicate};
    ///
    /// let linux_musl = get_target_by_triple("x86_64-unknown-linux-musl").unwrap();
    ///
    /// let expr = Expression::parse(r#"all(not(windows), target_env = "musl", any(target_arch = "x86", target_arch = "x86_64"))"#).unwrap();
    ///
    /// assert!(expr.eval(|pred| {
    ///     match pred {
    ///         Predicate::Target(tp) => tp.matches(linux_musl),
    ///         _ => false,
    ///     }
    /// }));
    /// ```
    ///
    /// Returning `Option<bool>`, where `None` indicates the result is unknown:
    ///
    /// ```
    /// use cfg_expr::{targets::*, Expression, Predicate};
    ///
    /// let expr = Expression::parse(r#"any(target_feature = "sse2", target_env = "musl")"#).unwrap();
    ///
    /// let linux_gnu = get_target_by_triple("x86_64-unknown-linux-gnu").unwrap();
    /// let linux_musl = get_target_by_triple("x86_64-unknown-linux-musl").unwrap();
    ///
    /// fn eval(expr: &Expression, target: &TargetInfo) -> Option<bool> {
    ///     expr.eval(|pred| {
    ///         match pred {
    ///             Predicate::Target(tp) => Some(tp.matches(target)),
    ///             Predicate::TargetFeature(_) => None,
    ///             _ => panic!("unexpected predicate"),
    ///         }
    ///     })
    /// }
    ///
    /// // Whether the target feature is present is unknown, so the whole expression evaluates to
    /// // None (unknown).
    /// assert_eq!(eval(&expr, linux_gnu), None);
    ///
    /// // Whether the target feature is present is irrelevant for musl, since the any() always
    /// // evaluates to true.
    /// assert_eq!(eval(&expr, linux_musl), Some(true));
    /// ```
    pub fn eval<EP, T>(&self, mut eval_predicate: EP) -> T
    where
        EP: FnMut(&Predicate<'_>) -> T,
        T: Logic,
    {
        let mut result_stack = SmallVec::<[T; 8]>::new();

        // We store the expression as postfix, so just evaluate each license
        // requirement in the order it comes, and then combining the previous
        // results according to each operator as it comes
        for node in self.expr.iter() {
            match node {
                ExprNode::Predicate(pred) => {
                    let pred = pred.to_pred(&self.original);
                    result_stack.push(eval_predicate(&pred));
                }
                ExprNode::Fn(Func::All(count)) => {
                    // all() with a comma separated list of configuration predicates.
                    let mut result = T::top();

                    for _ in 0..*count {
                        let r = result_stack.pop().unwrap();
                        result = result.and(r);
                    }

                    result_stack.push(result);
                }
                ExprNode::Fn(Func::Any(count)) => {
                    // any() with a comma separated list of configuration predicates.
                    let mut result = T::bottom();

                    for _ in 0..*count {
                        let r = result_stack.pop().unwrap();
                        result = result.or(r);
                    }

                    result_stack.push(result);
                }
                ExprNode::Fn(Func::Not) => {
                    // not() with a configuration predicate.
                    // It is true if its predicate is false
                    // and false if its predicate is true.
                    let r = result_stack.pop().unwrap();
                    result_stack.push(r.not());
                }
            }
        }

        result_stack.pop().unwrap()
    }
}

/// A propositional logic used to evaluate `Expression` instances.
///
/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
pub trait Logic {
    /// The result of an `all` operation with no operands, akin to Boolean `true`.
    fn top() -> Self;

    /// The result of an `any` operation with no operands, akin to Boolean `false`.
    fn bottom() -> Self;

    /// `AND`, which corresponds to the `all` operator.
    fn and(self, other: Self) -> Self;

    /// `OR`, which corresponds to the `any` operator.
    fn or(self, other: Self) -> Self;

    /// `NOT`, which corresponds to the `not` operator.
    fn not(self) -> Self;
}

/// A boolean logic.
impl Logic for bool {
    #[inline]
    fn top() -> Self {
        true
    }

    #[inline]
    fn bottom() -> Self {
        false
    }

    #[inline]
    fn and(self, other: Self) -> Self {
        self && other
    }

    #[inline]
    fn or(self, other: Self) -> Self {
        self || other
    }

    #[inline]
    fn not(self) -> Self {
        !self
    }
}

/// A three-valued logic -- `None` stands for the value being unknown.
///
/// The truth tables for this logic are described on
/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
impl Logic for Option<bool> {
    #[inline]
    fn top() -> Self {
        Some(true)
    }

    #[inline]
    fn bottom() -> Self {
        Some(false)
    }

    #[inline]
    fn and(self, other: Self) -> Self {
        match (self, other) {
            // If either is false, the expression is false.
            (Some(false), _) => Some(false),
            (_, Some(false)) => Some(false),
            // If both are true, the expression is true.
            (Some(true), Some(true)) => Some(true),
            // One or both are unknown -- the result is unknown.
            _ => None,
        }
    }

    #[inline]
    fn or(self, other: Self) -> Self {
        match (self, other) {
            // If either is true, the expression is true.
            (Some(true), _) => Some(true),
            (_, Some(true)) => Some(true),
            // If both are false, the expression is false.
            (Some(false), Some(false)) => Some(false),
            // One or both are unknown -- the result is unknown.
            _ => None,
        }
    }

    #[inline]
    fn not(self) -> Self {
        match self {
            Some(v) => Some(!v),
            None => None,
        }
    }
}