LlmAgent

Struct LlmAgent 

Source
pub struct LlmAgent { /* private fields */ }
Expand description

An agent that uses an LLM (Large Language Model) to process messages.

The LlmAgent integrates with the Ceylon Mesh agent system and delegates message processing to an LLM. It supports:

  • Configurable system prompts
  • Model parameters (temperature, max tokens, etc.)
  • Tool calling integration with existing ToolInvoker
  • Multiple LLM providers (OpenAI, Anthropic, Ollama, etc.)
  • Optional memory module integration

§Examples

use runtime::llm::{LlmAgent, LLMConfig};

// Create agent with Ollama (local, no API key needed)
let agent = LlmAgent::builder("my_agent", "ollama::llama2")
    .with_system_prompt("You are a helpful assistant.")
    .build()
    .expect("Failed to create agent");

// Create agent with OpenAI
let agent = LlmAgent::builder("gpt_agent", "openai::gpt-4")
    .with_api_key(std::env::var("OPENAI_API_KEY").unwrap())
    .with_temperature(0.7)
    .build()
    .expect("Failed to create agent");

Implementations§

Source§

impl LlmAgent

Source

pub fn builder( name: impl Into<String>, model: impl Into<String>, ) -> LlmAgentBuilder

Create a builder for constructing an LlmAgent.

§Arguments
  • name - The name of the agent
  • model - The model in “provider::model” format (e.g., “openai::gpt-4”, “ollama::llama2”)
§Examples
use runtime::llm::LlmAgent;

let agent = LlmAgent::builder("my_agent", "ollama::llama2")
    .build()
    .expect("Failed to create agent");
Examples found in repository?
examples/llm_multi_agent_mesh.rs (line 46)
45    fn new(mesh: Arc<LocalMesh>) -> Result<Self> {
46        let llm_agent = LlmAgent::builder("researcher", "ollama::gemma3:latest")
47            .with_system_prompt(
48                "You are a research assistant. When given a topic, provide detailed \
49                 information and key facts about it. Be thorough but focused. \
50                 Limit your response to 3-4 paragraphs.",
51            )
52            .with_temperature(0.7)
53            .with_max_tokens(1024)
54            .build()?;
55
56        Ok(Self { llm_agent, mesh })
57    }
58}
59
60#[async_trait]
61impl Agent for ResearcherAgent {
62    fn name(&self) -> String {
63        "researcher".to_string()
64    }
65
66    async fn on_start(&mut self, _ctx: &mut AgentContext) -> Result<()> {
67        println!("[Researcher] Started and ready for research tasks.");
68        Ok(())
69    }
70
71    async fn on_message(&mut self, msg: Message, ctx: &mut AgentContext) -> Result<()> {
72        let topic = String::from_utf8_lossy(&msg.payload);
73        println!("\n[Researcher] Received research request: {}", topic);
74
75        // Use LLM to research the topic
76        let research_prompt = format!(
77            "Research the following topic and provide key information: {}",
78            topic
79        );
80
81        match self
82            .llm_agent
83            .send_message_and_get_response(&research_prompt, ctx)
84            .await
85        {
86            Ok(research_result) => {
87                println!("[Researcher] Research complete. Sending to summarizer...");
88
89                // Send research results to the summarizer
90                let research_msg =
91                    Message::new("research_result", research_result.into_bytes(), self.name());
92                self.mesh.send(research_msg, "summarizer").await?;
93            }
94            Err(e) => {
95                eprintln!("[Researcher] Error during research: {}", e);
96                // Send error message to summarizer
97                let error_msg = Message::new(
98                    "error",
99                    format!("Research failed: {}", e).into_bytes(),
100                    self.name(),
101                );
102                self.mesh.send(error_msg, "summarizer").await?;
103            }
104        }
105
106        Ok(())
107    }
108}
109
110// --- Summarizer Agent Wrapper ---
111// Wraps an LlmAgent to summarize research findings
112struct SummarizerAgent {
113    llm_agent: LlmAgent,
114    completion_notify: Arc<Notify>,
115}
116
117impl SummarizerAgent {
118    fn new(completion_notify: Arc<Notify>) -> Result<Self> {
119        let llm_agent = LlmAgent::builder("summarizer", "ollama::gemma3:latest")
120            .with_system_prompt(
121                "You are a summarization expert. When given research content, \
122                 create a clear and concise summary with bullet points highlighting \
123                 the most important facts. Keep the summary to 5-7 bullet points.",
124            )
125            .with_temperature(0.5)
126            .with_max_tokens(512)
127            .build()?;
128
129        Ok(Self {
130            llm_agent,
131            completion_notify,
132        })
133    }
More examples
Hide additional examples
examples/llm_ollama.rs (line 28)
23async fn main() -> Result<()> {
24    println!("=== Ceylon Runtime - LLM Ollama Example ===\n");
25
26    // Create an LLM agent using Ollama with gemma3:latest model
27    // No API key is required for Ollama (local inference)
28    let mut agent = LlmAgent::builder("gemma_agent", "ollama::gemma3:latest")
29        .with_system_prompt(
30            "You are a helpful AI assistant. Be concise and informative in your responses.",
31        )
32        .with_temperature(0.7)
33        .with_max_tokens(1024)
34        .build()?;
35
36    println!("✓ LLM Agent created successfully with Ollama gemma3:latest\n");
37
38    // Create an agent context for the conversation
39    let mut ctx = AgentContext::new("gemma_demo_mesh".to_string(), None);
40
41    // Example 1: Simple greeting
42    println!("--- Example 1: Simple Greeting ---");
43    let prompt1 = "Hello! What are you capable of?";
44    println!("User: {}", prompt1);
45
46    match agent.send_message_and_get_response(prompt1, &mut ctx).await {
47        Ok(response) => {
48            println!("Assistant: {}\n", response);
49        }
50        Err(e) => {
51            eprintln!("Error: {}\n", e);
52            eprintln!("Make sure Ollama is running and gemma3:latest model is available.");
53            eprintln!("Pull the model with: ollama pull gemma3:latest");
54            return Err(e);
55        }
56    }
57
58    // Example 2: Technical question
59    println!("--- Example 2: Technical Question ---");
60    let prompt2 = "Explain what an AI agent is in 2-3 sentences.";
61    println!("User: {}", prompt2);
62
63    match agent.send_message_and_get_response(prompt2, &mut ctx).await {
64        Ok(response) => {
65            println!("Assistant: {}\n", response);
66        }
67        Err(e) => {
68            eprintln!("Error: {}\n", e);
69            return Err(e);
70        }
71    }
72
73    // Example 3: Creative task
74    println!("--- Example 3: Creative Task ---");
75    let prompt3 = "Write a haiku about programming.";
76    println!("User: {}", prompt3);
77
78    match agent.send_message_and_get_response(prompt3, &mut ctx).await {
79        Ok(response) => {
80            println!("Assistant: {}\n", response);
81        }
82        Err(e) => {
83            eprintln!("Error: {}\n", e);
84            return Err(e);
85        }
86    }
87
88    println!("=== Example completed successfully! ===");
89    Ok(())
90}
Source

pub fn new_with_config( name: impl Into<String>, config: LLMConfig, system_prompt: impl Into<String>, memory: Option<Arc<dyn Memory>>, ) -> Result<Self>

Create an LlmAgent with comprehensive LLMConfig

Source

pub fn with_react(&mut self, config: ReActConfig)

Enable ReAct (Reason + Act) mode

Source

pub async fn send_message_react( &mut self, message: impl Into<String>, ctx: &mut AgentContext, ) -> Result<ReActResult>

Send a message using ReAct reasoning mode

Source

pub async fn send_message_and_get_response( &mut self, message: impl Into<String>, ctx: &mut AgentContext, ) -> Result<String>

Send a message and get the LLM’s response This is a convenience method for Python bindings and direct usage. It processes the message with the LLM and returns the response text.

Examples found in repository?
examples/llm_multi_agent_mesh.rs (line 83)
71    async fn on_message(&mut self, msg: Message, ctx: &mut AgentContext) -> Result<()> {
72        let topic = String::from_utf8_lossy(&msg.payload);
73        println!("\n[Researcher] Received research request: {}", topic);
74
75        // Use LLM to research the topic
76        let research_prompt = format!(
77            "Research the following topic and provide key information: {}",
78            topic
79        );
80
81        match self
82            .llm_agent
83            .send_message_and_get_response(&research_prompt, ctx)
84            .await
85        {
86            Ok(research_result) => {
87                println!("[Researcher] Research complete. Sending to summarizer...");
88
89                // Send research results to the summarizer
90                let research_msg =
91                    Message::new("research_result", research_result.into_bytes(), self.name());
92                self.mesh.send(research_msg, "summarizer").await?;
93            }
94            Err(e) => {
95                eprintln!("[Researcher] Error during research: {}", e);
96                // Send error message to summarizer
97                let error_msg = Message::new(
98                    "error",
99                    format!("Research failed: {}", e).into_bytes(),
100                    self.name(),
101                );
102                self.mesh.send(error_msg, "summarizer").await?;
103            }
104        }
105
106        Ok(())
107    }
108}
109
110// --- Summarizer Agent Wrapper ---
111// Wraps an LlmAgent to summarize research findings
112struct SummarizerAgent {
113    llm_agent: LlmAgent,
114    completion_notify: Arc<Notify>,
115}
116
117impl SummarizerAgent {
118    fn new(completion_notify: Arc<Notify>) -> Result<Self> {
119        let llm_agent = LlmAgent::builder("summarizer", "ollama::gemma3:latest")
120            .with_system_prompt(
121                "You are a summarization expert. When given research content, \
122                 create a clear and concise summary with bullet points highlighting \
123                 the most important facts. Keep the summary to 5-7 bullet points.",
124            )
125            .with_temperature(0.5)
126            .with_max_tokens(512)
127            .build()?;
128
129        Ok(Self {
130            llm_agent,
131            completion_notify,
132        })
133    }
134}
135
136#[async_trait]
137impl Agent for SummarizerAgent {
138    fn name(&self) -> String {
139        "summarizer".to_string()
140    }
141
142    async fn on_start(&mut self, _ctx: &mut AgentContext) -> Result<()> {
143        println!("[Summarizer] Started and ready to summarize.");
144        Ok(())
145    }
146
147    async fn on_message(&mut self, msg: Message, ctx: &mut AgentContext) -> Result<()> {
148        let content = String::from_utf8_lossy(&msg.payload);
149        println!("\n[Summarizer] Received content from {}", msg.sender);
150
151        if msg.topic == "error" {
152            println!("[Summarizer] Received error: {}", content);
153            self.completion_notify.notify_one();
154            return Ok(());
155        }
156
157        // Use LLM to summarize the research
158        let summary_prompt = format!(
159            "Please summarize the following research content into clear bullet points:\n\n{}",
160            content
161        );
162
163        match self
164            .llm_agent
165            .send_message_and_get_response(&summary_prompt, ctx)
166            .await
167        {
168            Ok(summary) => {
169                println!("\n========================================");
170                println!("           FINAL SUMMARY");
171                println!("========================================\n");
172                println!("{}", summary);
173                println!("\n========================================\n");
174            }
175            Err(e) => {
176                eprintln!("[Summarizer] Error during summarization: {}", e);
177            }
178        }
179
180        // Signal completion
181        self.completion_notify.notify_one();
182        Ok(())
183    }
More examples
Hide additional examples
examples/llm_ollama.rs (line 46)
23async fn main() -> Result<()> {
24    println!("=== Ceylon Runtime - LLM Ollama Example ===\n");
25
26    // Create an LLM agent using Ollama with gemma3:latest model
27    // No API key is required for Ollama (local inference)
28    let mut agent = LlmAgent::builder("gemma_agent", "ollama::gemma3:latest")
29        .with_system_prompt(
30            "You are a helpful AI assistant. Be concise and informative in your responses.",
31        )
32        .with_temperature(0.7)
33        .with_max_tokens(1024)
34        .build()?;
35
36    println!("✓ LLM Agent created successfully with Ollama gemma3:latest\n");
37
38    // Create an agent context for the conversation
39    let mut ctx = AgentContext::new("gemma_demo_mesh".to_string(), None);
40
41    // Example 1: Simple greeting
42    println!("--- Example 1: Simple Greeting ---");
43    let prompt1 = "Hello! What are you capable of?";
44    println!("User: {}", prompt1);
45
46    match agent.send_message_and_get_response(prompt1, &mut ctx).await {
47        Ok(response) => {
48            println!("Assistant: {}\n", response);
49        }
50        Err(e) => {
51            eprintln!("Error: {}\n", e);
52            eprintln!("Make sure Ollama is running and gemma3:latest model is available.");
53            eprintln!("Pull the model with: ollama pull gemma3:latest");
54            return Err(e);
55        }
56    }
57
58    // Example 2: Technical question
59    println!("--- Example 2: Technical Question ---");
60    let prompt2 = "Explain what an AI agent is in 2-3 sentences.";
61    println!("User: {}", prompt2);
62
63    match agent.send_message_and_get_response(prompt2, &mut ctx).await {
64        Ok(response) => {
65            println!("Assistant: {}\n", response);
66        }
67        Err(e) => {
68            eprintln!("Error: {}\n", e);
69            return Err(e);
70        }
71    }
72
73    // Example 3: Creative task
74    println!("--- Example 3: Creative Task ---");
75    let prompt3 = "Write a haiku about programming.";
76    println!("User: {}", prompt3);
77
78    match agent.send_message_and_get_response(prompt3, &mut ctx).await {
79        Ok(response) => {
80            println!("Assistant: {}\n", response);
81        }
82        Err(e) => {
83            eprintln!("Error: {}\n", e);
84            return Err(e);
85        }
86    }
87
88    println!("=== Example completed successfully! ===");
89    Ok(())
90}
Source

pub fn last_response(&self) -> Option<String>

Get the last assistant response from conversation history

Trait Implementations§

Source§

impl Agent for LlmAgent

Source§

fn name(&self) -> String

Returns the unique name of this agent. Read more
Source§

fn on_message<'life0, 'life1, 'async_trait>( &'life0 mut self, msg: CeylonMessage, ctx: &'life1 mut AgentContext, ) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>
where Self: 'async_trait, 'life0: 'async_trait, 'life1: 'async_trait,

Called when a binary message is received. Read more
Source§

fn on_generic_message<'life0, 'life1, 'async_trait>( &'life0 mut self, msg: GenericMessage, ctx: &'life1 mut AgentContext, ) -> Pin<Box<dyn Future<Output = Result<GenericResponse>> + Send + 'async_trait>>
where Self: 'async_trait, 'life0: 'async_trait, 'life1: 'async_trait,

Handle a generic string message and return a response. Read more
Source§

fn tool_invoker(&self) -> Option<&ToolInvoker>

Get the tool invoker for this agent (if it has actions). Read more
Source§

fn tool_invoker_mut(&mut self) -> Option<&mut ToolInvoker>

Get mutable tool invoker for dynamic tool registration.
Source§

fn on_start<'life0, 'life1, 'async_trait>( &'life0 mut self, _ctx: &'life1 mut AgentContext, ) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>
where Self: 'async_trait, 'life0: 'async_trait, 'life1: 'async_trait,

Called when the agent starts. Read more
Source§

fn on_stop<'life0, 'life1, 'async_trait>( &'life0 mut self, _ctx: &'life1 mut AgentContext, ) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'async_trait>>
where Self: 'async_trait, 'life0: 'async_trait, 'life1: 'async_trait,

Called when the agent is stopping. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> PolicyExt for T
where T: ?Sized,

Source§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
Source§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<A, B, T> HttpServerConnExec<A, B> for T
where B: Body,