Struct Program

Source
pub struct Program<'f, Fm: FnMarker = (), Rm: RuntimeMarker = ()> { /* private fields */ }
Expand description

Compiled CEL program ready for evaluation.

A Program represents a compiled CEL expression that can be evaluated multiple times with different variable bindings (activations). Programs are created by compiling CEL expressions using an Env.

§Type Parameters

  • 'f: Lifetime of functions registered in the environment
  • Fm: Function marker type indicating sync/async function support
  • Rm: Runtime marker type indicating the async runtime (if any)

§Examples

§Basic Usage

use cel_cxx::*;

let env = Env::builder()
    .declare_variable::<String>("name")?
    .build()?;
     
let program = env.compile("'Hello, ' + name")?;

let activation = Activation::new()
    .bind_variable("name", "World")?;
     
let result = program.evaluate(activation)?;

§Type Information

use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("42")?;

// Check the return type
println!("Return type: {:?}", program.return_type());

Implementations§

Source§

impl<'f, Fm: FnMarker, Rm: RuntimeMarker> Program<'f, Fm, Rm>

Source

pub fn return_type(&self) -> &ValueType

Returns the return type of this program.

This method returns the CEL type that this program will produce when evaluated. The type is determined during compilation based on the expression and the declared variables and functions.

§Returns

A reference to the ValueType that this program returns.

§Examples
use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("42")?;

println!("Return type: {:?}", program.return_type());
// Output: Return type: Int
Examples found in repository?
examples/comprehensive.rs (line 664)
654fn demo7_program_introspection() -> Result<(), Error> {
655    println!("📌 Demo 7: Program Introspection & Return Types");
656
657    // Test with numeric expression
658    {
659        let env = Env::builder()
660            .declare_variable::<i64>("a")?
661            .declare_variable::<i64>("b")?
662            .build()?;
663        let program = env.compile("a + b")?;
664        let return_type = program.return_type();
665        println!("  Expression: 'a + b'");
666        println!("    Return type: {}", return_type);
667
668        let activation = Activation::new()
669            .bind_variable("a", 10)?
670            .bind_variable("b", 20)?;
671        let result = program.evaluate(&activation)?;
672        println!("    Result: {}", result);
673    }
674
675    // Test with string expression
676    {
677        let env = Env::builder()
678            .declare_variable::<String>("a")?
679            .declare_variable::<String>("b")?
680            .build()?;
681        let program = env.compile("a + b")?;
682        let return_type = program.return_type();
683        println!("  Expression: 'a + b' (strings)");
684        println!("    Return type: {}", return_type);
685
686        let activation = Activation::new()
687            .bind_variable("a", "Hello ".to_string())?
688            .bind_variable("b", "World!".to_string())?;
689        let result = program.evaluate(&activation)?;
690        println!("    Result: {}", result);
691    }
692
693    // Test with boolean expression
694    {
695        let env = Env::builder().declare_variable::<i64>("age")?.build()?;
696        let program = env.compile("age >= 18")?;
697        let return_type = program.return_type();
698        println!("  Expression: 'age >= 18'");
699        println!("    Return type: {}", return_type);
700
701        let activation = Activation::new().bind_variable("age", 25i64)?;
702        let result = program.evaluate(&activation)?;
703        println!("    Result: {}", result);
704    }
705
706    println!();
707    Ok(())
708}
Source

pub fn evaluate<'a, A, Afm>( &self, activation: A, ) -> <<Afm as FnMarkerAggr<Fm>>::Output as FnResult<'f, Result<Value, Error>>>::Output
where A: ActivationInterface<'f, Afm> + 'a, Afm: FnMarkerAggr<Fm>, <Afm as FnMarkerAggr<Fm>>::Output: FnResult<'f, Result<Value, Error>>, EvalDispatcher<<Afm as FnMarkerAggr<Fm>>::Output, Rm>: EvalDispatch<'f, A, Afm, Output = <<Afm as FnMarkerAggr<Fm>>::Output as FnResult<'f, Result<Value, Error>>>::Output>, 'f: 'a,

Evaluates the program with the given activation.

This method evaluates the compiled CEL expression using the variable and function bindings provided in the activation. The return type of this method depends on the program and activation markers:

  • For synchronous programs: Returns Result<Value, Error>
  • For asynchronous programs: Returns BoxFuture<Result<Value, Error>>
§Arguments
  • activation - The activation containing variable and function bindings
§Type Parameters
  • A - The activation type
  • Afm - The activation’s function marker type
§Examples
§Synchronous Evaluation
use cel_cxx::*;

let env = Env::builder()
    .declare_variable::<i64>("x")?
    .build()?;
     
let program = env.compile("x * 2")?;

let activation = Activation::new()
    .bind_variable("x", 21i64)?;
     
let result = program.evaluate(activation)?;
// result == Value::Int(42)
§With Empty Activation
use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("1 + 2 * 3")?;

let result = program.evaluate(())?;
// result == Value::Int(7)
Examples found in repository?
examples/basic.rs (line 32)
7fn main() -> Result<(), Error> {
8    println!("🚀 CEL-CXX Basic Example\n");
9
10    // Create an environment with variables and functions
11    let env = Env::builder()
12        .declare_variable::<String>("name")?
13        .declare_variable::<i64>("age")?
14        .register_global_function("greet", |name: &str| format!("Hello, {}!", name))?
15        .register_global_function("is_adult", |age: i64| age >= 18)?
16        .build()?;
17
18    // Compile and evaluate expressions
19    let expressions = vec![
20        "greet(name)",
21        "is_adult(age)",
22        "'Name: ' + name + ', Age: ' + string(age)",
23        "age >= 18 ? 'adult' : 'minor'",
24    ];
25
26    let activation = Activation::new()
27        .bind_variable("name", "Alice")?
28        .bind_variable("age", 25i64)?;
29
30    for expr in expressions {
31        let program = env.compile(expr)?;
32        let result = program.evaluate(&activation)?;
33        println!("{} = {}", expr, result);
34    }
35
36    println!("\n✅ Basic example completed!");
37    Ok(())
38}
More examples
Hide additional examples
examples/comprehensive.rs (line 206)
146fn demo1_basic_operations() -> Result<(), Error> {
147    println!("📌 Demo 1: Basic Expressions & Zero-Annotation Functions");
148
149    let env = Env::builder()
150        .declare_variable::<String>("name")?
151        .declare_variable::<i64>("age")?
152        .declare_variable::<f64>("score")?
153        // ✨ Zero-annotation functions - types automatically inferred!
154        .register_global_function("greet", |name: &str| format!("Hello, {}!", name))?
155        .register_global_function("is_adult", |age: i64| age >= 18)?
156        .register_global_function("grade", |score: f64| -> String {
157            match score {
158                90.0..=100.0 => "A".to_string(),
159                80.0..=89.9 => "B".to_string(),
160                70.0..=79.9 => "C".to_string(),
161                60.0..=69.9 => "D".to_string(),
162                _ => "F".to_string(),
163            }
164        })?
165        .register_global_function("calculate_discount", |age: i64, score: f64| -> f64 {
166            let base_discount = if age >= 65 { 0.2 } else { 0.0 };
167            let score_bonus = if score >= 90.0 { 0.1 } else { 0.0 };
168            base_discount + score_bonus
169        })?
170        .build()?;
171
172    // Test basic expressions including simple arithmetic
173    let test_cases = vec![
174        ("1 + 1", "Alice", 25i64, 95.0, "Simple arithmetic"),
175        (
176            "greet(name)",
177            "Alice",
178            25i64,
179            95.0,
180            "Function with string parameter",
181        ),
182        ("is_adult(age)", "Bob", 16i64, 85.0, "Boolean function"),
183        (
184            "grade(score)",
185            "Charlie",
186            30i64,
187            78.5,
188            "String return function",
189        ),
190        (
191            "calculate_discount(age, score)",
192            "Diana",
193            67i64,
194            92.0,
195            "Multi-parameter function",
196        ),
197    ];
198
199    for (expr, name, age, score, description) in test_cases {
200        let program = env.compile(expr)?;
201        let activation = Activation::new()
202            .bind_variable("name", name)?
203            .bind_variable("age", age)?
204            .bind_variable("score", score)?;
205
206        let result = program.evaluate(&activation)?;
207        println!("  {} = {} ({})", expr, result, description);
208    }
209
210    println!();
211    Ok(())
212}
213
214/// Demo 2: Variable binding and providers
215fn demo2_variable_operations() -> Result<(), Error> {
216    println!("📌 Demo 2: Variable Binding & Providers");
217
218    let env = Env::builder()
219        .declare_variable::<i64>("a")?
220        .declare_variable::<i64>("b")?
221        .declare_global_function::<fn() -> i64>("get_const")?
222        .register_global_function("multiply", |x: i64, y: i64| x * y)?
223        .build()?;
224
225    // Test direct variable binding
226    {
227        println!("  Variable binding:");
228        let program = env.compile("a + b")?;
229        let activation = Activation::new()
230            .bind_variable("a", 10)?
231            .bind_variable("b", 20)?;
232        let result = program.evaluate(&activation)?;
233        println!("    a + b = {} (direct binding)", result);
234    }
235
236    // Test variable provider binding
237    {
238        println!("  Variable provider binding:");
239        let program = env.compile("a * b")?;
240        let activation = Activation::new()
241            .bind_variable("a", 5)?
242            .bind_variable_provider("b", || -> Result<i64, Error> {
243                println!("    Provider called for variable 'b'");
244                Ok(7)
245            })?;
246        let result = program.evaluate(&activation)?;
247        println!("    a * b = {} (provider binding)", result);
248    }
249
250    // Test function declaration and binding
251    {
252        println!("  Function declaration & binding:");
253        let program = env.compile("get_const() + multiply(a, 3)")?;
254        let activation = Activation::new()
255            .bind_variable("a", 4)?
256            .bind_global_function("get_const", || -> Result<i64, Error> { Ok(100) })?;
257        let result = program.evaluate(&activation)?;
258        println!(
259            "    get_const() + multiply(a, 3) = {} (function binding)",
260            result
261        );
262    }
263
264    println!();
265    Ok(())
266}
267
268/// Demo 3: Opaque types with member functions
269fn demo3_opaque_member_functions() -> Result<(), Error> {
270    println!("📌 Demo 3: Opaque Types & Member Functions");
271
272    let env = Env::builder()
273        .declare_variable::<Student>("student")?
274        // ✨ Register struct methods directly using RustType::method_name syntax
275        .register_member_function("get_name", Student::get_name)?
276        .register_member_function("get_age", Student::get_age)?
277        .register_member_function("get_grade", Student::get_grade)?
278        .register_member_function("is_passing", Student::is_passing)?
279        .register_member_function("has_subject", Student::has_subject)?
280        .register_member_function("get_letter_grade", Student::get_letter_grade)?
281        .build()?;
282
283    let student = Student {
284        name: "John Doe".to_string(),
285        age: 18,
286        grade: 87.5,
287        subjects: vec!["Math".to_string(), "Physics".to_string()],
288    };
289
290    let activation = Activation::new().bind_variable("student", student)?;
291
292    let test_expressions = vec![
293        ("student.get_name()", "Get student name"),
294        ("student.get_age()", "Get student age"),
295        ("student.get_grade()", "Get numerical grade"),
296        ("student.get_letter_grade()", "Get letter grade"),
297        ("student.is_passing()", "Check if passing"),
298        ("student.has_subject('Math')", "Check if has Math subject"),
299        (
300            "student.has_subject('Chemistry')",
301            "Check if has Chemistry subject",
302        ),
303    ];
304
305    for (expr, description) in test_expressions {
306        let program = env.compile(expr)?;
307        let result = program.evaluate(&activation)?;
308        println!("  {} = {} ({})", expr, result, description);
309    }
310
311    println!();
312    Ok(())
313}
314
315/// Demo 4: Type conversions and standard Rust types
316fn demo4_type_conversions() -> Result<(), Error> {
317    println!("📌 Demo 4: Type Conversions & Standard Rust Types");
318
319    // Functions returning different types (both direct values and Results)
320    fn return_string_direct() -> String {
321        "hello world".to_string()
322    }
323    fn return_int_result() -> Result<i64, std::io::Error> {
324        Ok(42)
325    }
326    fn return_list() -> Vec<i64> {
327        vec![1, 2, 3, 4, 5]
328    }
329    fn return_map() -> HashMap<String, i64> {
330        let mut map = HashMap::new();
331        map.insert("key1".to_string(), 100);
332        map.insert("key2".to_string(), 200);
333        map
334    }
335    fn return_optional_some() -> Option<String> {
336        Some("optional value".to_string())
337    }
338    fn return_optional_none() -> Option<String> {
339        None
340    }
341
342    let env = Env::builder()
343        .register_global_function("return_string_direct", return_string_direct)?
344        .register_global_function("return_int_result", return_int_result)?
345        .register_global_function("return_list", return_list)?
346        .register_global_function("return_map", return_map)?
347        .register_global_function("return_optional_some", return_optional_some)?
348        .register_global_function("return_optional_none", return_optional_none)?
349        .build()?;
350
351    let test_cases = vec![
352        ("return_string_direct()", "String conversion"),
353        ("return_int_result()", "Result<i64> conversion"),
354        ("return_list()", "Vec<i64> conversion"),
355        ("return_map()", "HashMap conversion"),
356        ("return_optional_some()", "Option<String> Some conversion"),
357        ("return_optional_none()", "Option<String> None conversion"),
358    ];
359
360    for (expr, description) in test_cases {
361        let program = env.compile(expr)?;
362        let result = program.evaluate(())?;
363        println!("  {} = {} ({})", expr, result, description);
364
365        // Demonstrate type conversion back to Rust types
366        match expr {
367            "return_string_direct()" => {
368                let rust_string: String = result
369                    .try_into()
370                    .map_err(|_| Error::invalid_argument("string conversion failed".to_string()))?;
371                println!("    Converted back to Rust String: '{}'", rust_string);
372            }
373            "return_int_result()" => {
374                let rust_int: i64 = result
375                    .try_into()
376                    .map_err(|_| Error::invalid_argument("int conversion failed".to_string()))?;
377                println!("    Converted back to Rust i64: {}", rust_int);
378            }
379            "return_list()" => {
380                let rust_list: Vec<i64> = result
381                    .try_into()
382                    .map_err(|_| Error::invalid_argument("list conversion failed".to_string()))?;
383                println!("    Converted back to Rust Vec<i64>: {:?}", rust_list);
384            }
385            _ => {}
386        }
387    }
388
389    println!();
390    Ok(())
391}
392
393/// Demo 5: Generic functions and type annotations
394fn demo5_generic_functions() -> Result<(), Error> {
395    println!("📌 Demo 5: Generic Functions & Function Overloads");
396
397    // Generic function that counts items in any Vec<T>
398    fn count_items<T>(items: Vec<T>) -> i64 {
399        items.len() as i64
400    }
401
402    // Generic function that processes maps
403    fn get_map_size<K, V>(map: HashMap<K, V>) -> i64 {
404        map.len() as i64
405    }
406
407    // Function working with references in containers
408    fn join_strings(strings: Vec<&str>, separator: &str) -> String {
409        strings.join(separator)
410    }
411
412    let env = Env::builder()
413        .declare_variable::<Vec<String>>("string_list")?
414        .declare_variable::<Vec<i64>>("int_list")?
415        .declare_variable::<HashMap<String, i64>>("score_map")?
416        .declare_variable::<Vec<f64>>("floats")?
417        // Register generic functions with specific type annotations
418        .register_global_function("count_strings", count_items::<String>)?
419        .register_global_function("count_ints", count_items::<i64>)?
420        .register_global_function("get_string_map_size", get_map_size::<String, i64>)?
421        .register_global_function("join_strings", join_strings)?
422        // Multiple functions with same name, different signatures (overloads)
423        .register_global_function("process", |x: i64| x * 2)?
424        .register_global_function("process", |x: f64| (x * 2.0).round())?
425        .register_global_function("process", |x: String| x.to_uppercase())?
426        // Overloaded member functions for different container types
427        .register_member_function("sum", |numbers: Vec<i64>| numbers.iter().sum::<i64>())?
428        .register_member_function("sum", |floats: Vec<f64>| floats.iter().sum::<f64>())?
429        .build()?;
430
431    let test_cases = vec![
432        // Generic function tests
433        ("count_strings(string_list)", "Count strings in list"),
434        ("count_ints(int_list)", "Count integers in list"),
435        ("get_string_map_size(score_map)", "Get map size"),
436        ("join_strings(string_list, ' ')", "Join strings with space"),
437        // Function overload tests
438        ("process(42)", "Process integer (multiply by 2)"),
439        ("process(3.14)", "Process float (multiply by 2, round)"),
440        ("process('hello')", "Process string (uppercase)"),
441        ("int_list.sum()", "Sum integers"),
442        ("floats.sum()", "Sum floats"),
443    ];
444
445    let activation = Activation::new()
446        .bind_variable(
447            "string_list",
448            vec!["hello".to_string(), "world".to_string(), "rust".to_string()],
449        )?
450        .bind_variable("int_list", vec![1, 2, 3, 4, 5, 6])?
451        .bind_variable("floats", vec![1.5, 2.7, 3.143, 4.0])?
452        .bind_variable("score_map", {
453            let mut map = HashMap::new();
454            map.insert("alice".to_string(), 95);
455            map.insert("bob".to_string(), 87);
456            map.insert("charlie".to_string(), 92);
457            map
458        })?;
459
460    for (expr, description) in test_cases {
461        let program = env.compile(expr)?;
462        let result = program.evaluate(&activation)?;
463        println!("  {} = {} ({})", expr, result, description);
464    }
465
466    println!();
467    Ok(())
468}
469
470/// Demo 6: Error handling with different error types including Box<dyn std::error::Error>
471fn demo6_error_handling() -> Result<(), Error> {
472    println!("📌 Demo 6: Error Handling & Validation");
473
474    let env = Env::builder()
475        .declare_variable::<String>("input")?
476        .declare_variable::<i64>("divisor")?
477        .declare_variable::<String>("email")?
478        // Functions returning different error types using thiserror-derived types
479        .register_global_function("safe_parse", |s: &str| -> Result<i64, ValidationError> {
480            s.parse::<i64>()
481                .map_err(|e| ValidationError::ParseError(e.to_string()))
482        })?
483        .register_global_function(
484            "safe_divide",
485            |a: i64, b: i64| -> Result<f64, ValidationError> {
486                if b == 0 {
487                    Err(ValidationError::DivisionByZero)
488                } else {
489                    Ok(a as f64 / b as f64)
490                }
491            },
492        )?
493        // Additional validation functions with ValidationError
494        .register_global_function(
495            "validate_email",
496            |email: &str| -> Result<bool, ValidationError> {
497                if email.is_empty() {
498                    return Err(ValidationError::EmailError(
499                        "Email cannot be empty".to_string(),
500                    ));
501                }
502                if !email.contains('@') {
503                    return Err(ValidationError::EmailError(
504                        "Email must contain @ symbol".to_string(),
505                    ));
506                }
507                if !email.contains('.') {
508                    return Err(ValidationError::EmailError(
509                        "Email must contain . symbol".to_string(),
510                    ));
511                }
512                let parts: Vec<&str> = email.split('@').collect();
513                if parts.len() != 2 {
514                    return Err(ValidationError::EmailError(
515                        "Email must contain exactly one @ symbol".to_string(),
516                    ));
517                }
518                if parts[0].is_empty() || parts[1].is_empty() {
519                    return Err(ValidationError::EmailError(
520                        "Email local and domain parts cannot be empty".to_string(),
521                    ));
522                }
523                Ok(true)
524            },
525        )?
526        .register_global_function(
527            "validate_age",
528            |age: i64| -> Result<String, ValidationError> {
529                match age {
530                    0..=17 => Ok("minor".to_string()),
531                    18..=64 => Ok("adult".to_string()),
532                    65..=120 => Ok("senior".to_string()),
533                    _ => Err(ValidationError::AgeError(format!("Invalid age: {}", age))),
534                }
535            },
536        )?
537        .register_global_function(
538            "validate_range",
539            |x: i64, min: i64, max: i64| -> Result<i64, ValidationError> {
540                if x < min || x > max {
541                    Err(ValidationError::RangeError { value: x, min, max })
542                } else {
543                    Ok(x)
544                }
545            },
546        )?
547        .build()?;
548
549    let test_cases = vec![
550        // Success cases
551        (
552            "safe_parse('42')",
553            "42",
554            2i64,
555            "valid@email.com",
556            true,
557            "Parse valid number",
558        ),
559        (
560            "safe_divide(10, divisor)",
561            "10",
562            2i64,
563            "test@example.com",
564            true,
565            "Safe division",
566        ),
567        (
568            "validate_email(email)",
569            "25",
570            1i64,
571            "user@domain.com",
572            true,
573            "Valid email",
574        ),
575        (
576            "validate_age(safe_parse(input))",
577            "25",
578            1i64,
579            "user@test.com",
580            true,
581            "Valid age",
582        ),
583        // Error cases
584        (
585            "safe_parse('invalid')",
586            "invalid",
587            2i64,
588            "test@test.com",
589            false,
590            "Parse invalid number",
591        ),
592        (
593            "safe_divide(10, divisor)",
594            "10",
595            0i64,
596            "test@test.com",
597            false,
598            "Division by zero",
599        ),
600        (
601            "validate_email(email)",
602            "10",
603            1i64,
604            "invalid-email",
605            false,
606            "Invalid email format",
607        ),
608        (
609            "validate_age(safe_parse(input))",
610            "150",
611            1i64,
612            "test@test.com",
613            false,
614            "Invalid age",
615        ),
616        (
617            "validate_range(safe_parse(input), 1, 100)",
618            "150",
619            2i64,
620            "test@test.com",
621            false,
622            "Value out of range",
623        ),
624    ];
625
626    for (expr, input, divisor, email, should_succeed, description) in test_cases {
627        let program = env.compile(expr)?;
628        let activation = Activation::new()
629            .bind_variable("input", input)?
630            .bind_variable("divisor", divisor)?
631            .bind_variable("email", email)?;
632
633        match program.evaluate(&activation) {
634            Ok(result) => {
635                println!("  {} = {} ✅ ({})", expr, result, description);
636                if !should_succeed {
637                    println!("    ⚠️  Expected this to fail!");
638                }
639            }
640            Err(e) => {
641                println!("  {} -> ERROR: {} ❌ ({})", expr, e, description);
642                if should_succeed {
643                    println!("    ⚠️  Expected this to succeed!");
644                }
645            }
646        }
647    }
648
649    println!();
650    Ok(())
651}
652
653/// Demo 7: Program introspection and return types
654fn demo7_program_introspection() -> Result<(), Error> {
655    println!("📌 Demo 7: Program Introspection & Return Types");
656
657    // Test with numeric expression
658    {
659        let env = Env::builder()
660            .declare_variable::<i64>("a")?
661            .declare_variable::<i64>("b")?
662            .build()?;
663        let program = env.compile("a + b")?;
664        let return_type = program.return_type();
665        println!("  Expression: 'a + b'");
666        println!("    Return type: {}", return_type);
667
668        let activation = Activation::new()
669            .bind_variable("a", 10)?
670            .bind_variable("b", 20)?;
671        let result = program.evaluate(&activation)?;
672        println!("    Result: {}", result);
673    }
674
675    // Test with string expression
676    {
677        let env = Env::builder()
678            .declare_variable::<String>("a")?
679            .declare_variable::<String>("b")?
680            .build()?;
681        let program = env.compile("a + b")?;
682        let return_type = program.return_type();
683        println!("  Expression: 'a + b' (strings)");
684        println!("    Return type: {}", return_type);
685
686        let activation = Activation::new()
687            .bind_variable("a", "Hello ".to_string())?
688            .bind_variable("b", "World!".to_string())?;
689        let result = program.evaluate(&activation)?;
690        println!("    Result: {}", result);
691    }
692
693    // Test with boolean expression
694    {
695        let env = Env::builder().declare_variable::<i64>("age")?.build()?;
696        let program = env.compile("age >= 18")?;
697        let return_type = program.return_type();
698        println!("  Expression: 'age >= 18'");
699        println!("    Return type: {}", return_type);
700
701        let activation = Activation::new().bind_variable("age", 25i64)?;
702        let result = program.evaluate(&activation)?;
703        println!("    Result: {}", result);
704    }
705
706    println!();
707    Ok(())
708}
709
710/// Demo 8: Advanced container operations and reference handling
711fn demo8_container_operations() -> Result<(), Error> {
712    println!("📌 Demo 8: Container Operations & Reference Handling");
713
714    let env = Env::builder()
715        .declare_variable::<Vec<&str>>("string_refs")?
716        .declare_variable::<HashMap<i64, &str>>("lookup_table")?
717        .declare_variable::<Option<&str>>("maybe_value")?
718        .declare_variable::<Vec<User>>("users")?
719        // Functions working with reference types
720        .register_global_function("longest_string", |strings: Vec<&str>| -> Option<String> {
721            strings
722                .iter()
723                .max_by_key(|s| s.len())
724                .map(|s| s.to_string())
725        })?
726        .register_global_function(
727            "lookup",
728            |table: HashMap<i64, &str>, key: i64| -> Option<String> {
729                table.get(&key).map(|s| s.to_string())
730            },
731        )?
732        .register_global_function("string_length", |s: Option<&str>| -> i64 {
733            s.map(|s| s.len() as i64).unwrap_or(0)
734        })?
735        // Advanced filtering and mapping
736        .register_global_function("filter_adults", |users: Vec<User>| -> Vec<User> {
737            users.into_iter().filter(|u| u.age >= 18).collect()
738        })?
739        .register_global_function(
740            "group_by_age_range",
741            |users: Vec<User>| -> HashMap<String, Vec<String>> {
742                let mut groups: HashMap<String, Vec<String>> = HashMap::new();
743                for user in users {
744                    let range = match user.age {
745                        0..=17 => "minor",
746                        18..=64 => "adult",
747                        _ => "senior",
748                    };
749                    groups.entry(range.to_string()).or_default().push(user.name);
750                }
751                groups
752            },
753        )?
754        .build()?;
755
756    // Prepare test data with proper lifetimes
757    let source_strings = [
758        "hello".to_string(),
759        "world".to_string(),
760        "rust".to_string(),
761        "programming".to_string(),
762    ];
763    let string_refs: Vec<&str> = source_strings.iter().map(|s| s.as_str()).collect();
764
765    let lookup_table: HashMap<i64, &str> = HashMap::from([(1, "one"), (2, "two"), (3, "three")]);
766
767    let maybe_value: Option<&str> = Some("test string");
768
769    let users = vec![
770        User {
771            id: 1,
772            name: "Alice".to_string(),
773            email: "alice@test.com".to_string(),
774            age: 25,
775            roles: vec![],
776            metadata: HashMap::new(),
777        },
778        User {
779            id: 2,
780            name: "Bob".to_string(),
781            email: "bob@test.com".to_string(),
782            age: 16,
783            roles: vec![],
784            metadata: HashMap::new(),
785        },
786        User {
787            id: 3,
788            name: "Carol".to_string(),
789            email: "carol@test.com".to_string(),
790            age: 67,
791            roles: vec![],
792            metadata: HashMap::new(),
793        },
794    ];
795
796    let test_expressions = vec![
797        ("longest_string(string_refs)", "Find longest string"),
798        ("lookup(lookup_table, 2)", "Lookup value by key"),
799        ("string_length(maybe_value)", "Get optional string length"),
800        ("filter_adults(users).size()", "Count adult users"),
801        (
802            "group_by_age_range(users).size()",
803            "Group users by age range",
804        ),
805    ];
806
807    let activation = Activation::new()
808        .bind_variable("string_refs", string_refs)?
809        .bind_variable("lookup_table", lookup_table)?
810        .bind_variable("maybe_value", maybe_value)?
811        .bind_variable("users", users)?;
812
813    for (expr, description) in test_expressions {
814        let program = env.compile(expr)?;
815        let result = program.evaluate(&activation)?;
816        println!("  {} = {} ({})", expr, result, description);
817    }
818
819    println!();
820    Ok(())
821}
Source§

impl<'f, Rm: RuntimeMarker> Program<'f, (), Rm>

Source

pub fn force_async(self) -> Program<'f, Async, Rm>

Available on crate feature async only.

Forces conversion to an async program.

This method converts a synchronous program to an asynchronous one, allowing it to work with async functions and evaluation.

§Examples
use cel_cxx::*;

let sync_program = Env::builder().build()?.compile("42")?;
let async_program = sync_program.force_async();
Source§

impl<'f, Fm: FnMarker> Program<'f, Fm, ()>

Source

pub fn use_runtime<Rt: Runtime>(self) -> Program<'f, Fm, Rt>

Available on crate feature async only.

Configures this program to use a specific async runtime.

This method allows you to specify which async runtime should be used for evaluating this program when it contains async functions.

§Type Parameters
  • Rt - The runtime type to use
§Examples
use cel_cxx::*;
use cel_cxx::r#async::Tokio;

let env = Env::builder().build()?;
let program = env.compile("42")?;

let async_program = program.use_runtime::<Tokio>();
Source

pub fn use_tokio(self) -> Program<'f, Fm, Tokio>

Available on crate features async and tokio only.

Configures this program to use the Tokio async runtime.

This is a convenience method equivalent to use_runtime::<Tokio>().

§Examples
use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("42")?;

let tokio_program = program.use_tokio();
Source

pub fn use_async_std(self) -> Program<'f, Fm, AsyncStd>

Available on crate features async and async-std only.

Configures this program to use the async-std runtime.

This is a convenience method equivalent to use_runtime::<AsyncStd>().

§Examples
use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("42")?;

let async_std_program = program.use_async_std();
Source

pub fn use_smol(self) -> Program<'f, Fm, Smol>

Available on crate features async and smol only.

Configures this program to use the smol runtime.

This is a convenience method equivalent to use_runtime::<Smol>().

§Examples
use cel_cxx::*;

let env = Env::builder().build()?;
let program = env.compile("42")?;

let smol_program = program.use_smol();

Trait Implementations§

Source§

impl<'f, Fm: FnMarker, Rm: RuntimeMarker> Clone for Program<'f, Fm, Rm>

Source§

fn clone(&self) -> Self

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<'f, Fm: FnMarker, Rm: RuntimeMarker> Debug for Program<'f, Fm, Rm>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl<'f, Fm, Rm> Freeze for Program<'f, Fm, Rm>

§

impl<'f, Fm = (), Rm = ()> !RefUnwindSafe for Program<'f, Fm, Rm>

§

impl<'f, Fm, Rm> Send for Program<'f, Fm, Rm>
where Fm: Send, Rm: Send,

§

impl<'f, Fm, Rm> Sync for Program<'f, Fm, Rm>
where Fm: Sync, Rm: Sync,

§

impl<'f, Fm, Rm> Unpin for Program<'f, Fm, Rm>
where Fm: Unpin, Rm: Unpin,

§

impl<'f, Fm = (), Rm = ()> !UnwindSafe for Program<'f, Fm, Rm>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more