1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*!
Adagrad optimiser

Described in [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](https://jmlr.org/papers/v12/duchi11a.html)

Pseudocode (including decoupling of weight decay):

$$
\\begin{aligned}
            &\\rule{110mm}{0.4pt}                                                                 \\\\
            &\\textbf{input}      : \\gamma \\text{ (lr)}, \\: \\theta_0 \\text{ (params)}, \\: f(\\theta)
                \\text{ (objective)}, \\: \\lambda \\text{ (weight decay)},                          \\\\
            &\\hspace{12mm}    \\tau \\text{ (initial accumulator value)}, \\: \\eta\\text{ (lr decay)}\\\\
            &\\textbf{initialize} :  statesum_0 \\leftarrow 0                             \\\\[-1.ex]
            &\\rule{110mm}{0.4pt}                                                                 \\\\
            &\\textbf{for} \\: t=1 \\: \\textbf{to} \\: \\ldots \\: \\textbf{do}                         \\\\
            &\\hspace{5mm}g_t           \\leftarrow   \\nabla_{\\theta} f_t (\\theta_{t-1})           \\\\
            &\\hspace{5mm} \\tilde{\\gamma}    \\leftarrow \\gamma / (1 +(t-1) \\eta)                  \\\\
            &\\hspace{5mm}\\textbf{if} \\: \\lambda \\textbf{ is } \\text{Some}                        \\\\
            &\\hspace{10mm}\\textbf{if} \\: \\textit{decoupled}                       \\\\
            &\\hspace{15mm} \\theta_t \\leftarrow \\theta_{t-1} - \\gamma \\lambda \\theta_{t-1}                    \\\\
            &\\hspace{10mm}\\textbf{else}                                                              \\\\
            &\\hspace{15mm} g_t \\leftarrow g_t + \\lambda  \\theta_{t-1}                            \\\\
            &\\hspace{5mm}statesum_t  \\leftarrow  statesum_{t-1} + g^2_t                      \\\\
            &\\hspace{5mm}\\theta_t \\leftarrow
                \\theta_{t-1}- \\tilde{\\gamma} \\frac{g_t}{\\sqrt{statesum_t}+\\epsilon}            \\\\
            &\\rule{110mm}{0.4pt}                                                          \\\\[-1.ex]
            &\\bf{return} \\:  \\theta_t                                                     \\\\[-1.ex]
            &\\rule{110mm}{0.4pt}                                                          \\\\[-1.ex]
       \\end{aligned}
$$



*/

use candle_core::{Result, Var};
use candle_nn::optim::Optimizer;

use crate::{Decay, OptimParams};

/// Adagrad optimiser
///
/// Described in [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](https://jmlr.org/papers/v12/duchi11a.html)
#[derive(Debug)]
pub struct Adagrad {
    vars: Vec<VarAdaGrad>,
    params: ParamsAdaGrad,
    t: f64,
}

#[derive(Debug)]
struct VarAdaGrad {
    theta: Var,
    sum: Var,
}

/// Parameters for the Adagrad optimiser
#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ParamsAdaGrad {
    /// Learning rate
    pub lr: f64,
    /// Learning rate decay
    pub lr_decay: f64,
    /// Initial value of accumulator
    pub initial_acc: f64,
    /// weight decay
    pub weight_decay: Option<Decay>,
    /// term added to the denominator to improve numerical stability
    pub eps: f64,
}

impl Default for ParamsAdaGrad {
    fn default() -> Self {
        Self {
            lr: 0.01,
            lr_decay: 0.0,
            initial_acc: 0.0,
            weight_decay: None,
            eps: 1e-10,
        }
    }
}

impl Optimizer for Adagrad {
    type Config = ParamsAdaGrad;

    fn new(vars: Vec<Var>, params: ParamsAdaGrad) -> Result<Self> {
        let vars = vars
            .into_iter()
            .filter(|var| var.dtype().is_float())
            .map(|var| {
                let dtype = var.dtype();
                let shape = var.shape();
                let device = var.device();
                let sum = Var::zeros(shape, dtype, device)?;
                Ok(VarAdaGrad { theta: var, sum })
            })
            .collect::<Result<Vec<VarAdaGrad>>>()?;
        // // Err(SGDError::NoMomentum)?;
        // let mut params = params;
        // params.t = 0;
        Ok(Self {
            vars,
            t: 0.,
            params,
        })
    }

    fn learning_rate(&self) -> f64 {
        self.params.lr
    }

    fn step(&mut self, grads: &candle_core::backprop::GradStore) -> Result<()> {
        if let Some(decay) = self.params.weight_decay {
            match decay {
                Decay::WeightDecay(decay) => {
                    for var in &self.vars {
                        let theta = &var.theta;
                        let sum = &var.sum;
                        if let Some(grad) = grads.get(theta) {
                            let gamma_tilde =
                                self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
                            let grad = &(grad + (decay * theta.as_tensor())?)?;
                            let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
                            let change = (gamma_tilde
                                * (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
                            sum.set(&current_sum)?;
                            theta.set(&theta.sub(&change)?)?;
                        }
                    }
                }
                Decay::DecoupledWeightDecay(decay) => {
                    for var in &self.vars {
                        let theta = &var.theta;
                        let sum = &var.sum;
                        if let Some(grad) = grads.get(theta) {
                            // decoupled weight decay step
                            theta
                                .set(&(theta.as_tensor() * self.params.lr.mul_add(-decay, 1.))?)?;
                            let gamma_tilde =
                                self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
                            let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
                            let change = (gamma_tilde
                                * (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
                            sum.set(&current_sum)?;
                            theta.set(&theta.sub(&change)?)?;
                        }
                    }
                }
            }
        } else {
            for var in &self.vars {
                let theta = &var.theta;
                let sum = &var.sum;
                if let Some(grad) = grads.get(theta) {
                    let gamma_tilde = self.params.lr / self.t.mul_add(self.params.lr_decay, 1.);
                    let current_sum = (sum.as_tensor() + grad.powf(2.)?)?;
                    let change =
                        (gamma_tilde * (grad.div(&(current_sum.powf(0.5)? + self.params.eps)?))?)?;
                    sum.set(&current_sum)?;
                    theta.set(&theta.sub(&change)?)?;
                }
            }
        }
        self.t += 1.;
        Ok(())
    }

    fn set_learning_rate(&mut self, lr: f64) {
        self.params.lr = lr;
    }
}

impl OptimParams for Adagrad {
    fn params(&self) -> &Self::Config {
        &self.params
    }

    fn set_params(&mut self, config: Self::Config) {
        self.params = config;
    }
}

impl Adagrad {
    /// Return the vars being optimised
    #[must_use]
    pub fn into_inner(self) -> Vec<Var> {
        self.vars.into_iter().map(|v| v.theta).collect()
    }

    // pub fn push(&mut self, var: &Var) {
    //     self.vars.push(var.clone());
    // }
}

#[cfg(test)]
mod tests {
    // use candle_core::test_utils::{to_vec0_round, to_vec2_round};

    use anyhow::Result;
    use assert_approx_eq::assert_approx_eq;
    use candle_core::{Device, Var};
    use candle_nn::Optimizer;

    use super::*;
    #[test]
    fn lr_test() -> Result<()> {
        let params = ParamsAdaGrad {
            lr: 0.004,
            ..Default::default()
        };
        // Now use backprop to run a linear regression between samples and get the coefficients back.
        let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
        let b = Var::new(0f32, &Device::Cpu)?;
        let mut optim = Adagrad::new(vec![w.clone(), b.clone()], params)?;
        assert_approx_eq!(0.004, optim.learning_rate());
        optim.set_learning_rate(0.002);
        assert_approx_eq!(0.002, optim.learning_rate());
        Ok(())
    }

    #[test]
    fn into_inner_test() -> Result<()> {
        let params = ParamsAdaGrad::default();
        let w = Var::new(&[[3f32, 1.]], &Device::Cpu)?;
        let b = Var::new(-2f32, &Device::Cpu)?;
        let optim = Adagrad::new(vec![w.clone(), b.clone()], params)?;
        let inner = optim.into_inner();
        assert_eq!(inner[0].as_tensor().to_vec2::<f32>()?, &[[3f32, 1.]]);
        assert_approx_eq!(inner[1].as_tensor().to_vec0::<f32>()?, -2_f32);
        Ok(())
    }

    #[test]
    fn params_test() -> Result<()> {
        let params = ParamsAdaGrad {
            lr: 0.004,
            ..Default::default()
        };
        // Now use backprop to run a linear regression between samples and get the coefficients back.
        let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
        let b = Var::new(0f32, &Device::Cpu)?;
        let mut optim = Adagrad::new(vec![w.clone(), b.clone()], params.clone())?;
        assert_eq!(params, optim.params().clone());
        let new_params = ParamsAdaGrad {
            lr: 0.002,
            ..Default::default()
        };
        optim.set_params(new_params.clone());
        assert_eq!(new_params, optim.params().clone());
        Ok(())
    }
}