1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use super::{
    axi, control_axi::ControlInterface, fsm, memory_axi::bram,
    memory_axi::MemoryInterface, utils,
};
use crate::backend::traits::Backend;
use calyx_ir as ir;
use calyx_utils::{CalyxResult, Error};
use vast::v05::ast as v;

/// A backend that generates the Xilinx interfacing for a Calyx program.
#[derive(Default)]
pub struct XilinxInterfaceBackend;

impl Backend for XilinxInterfaceBackend {
    fn name(&self) -> &'static str {
        "xilinx-axi"
    }

    fn validate(_ctx: &ir::Context) -> CalyxResult<()> {
        Ok(())
    }

    fn link_externs(
        _lib: &ir::Context,
        _write: &mut calyx_utils::OutputFile,
    ) -> CalyxResult<()> {
        Ok(())
    }

    fn emit(
        prog: &ir::Context,
        file: &mut calyx_utils::OutputFile,
    ) -> CalyxResult<()> {
        let toplevel = prog
            .components
            .iter()
            .find(|c| c.name == prog.entrypoint)
            .unwrap();

        let memories = external_memories(toplevel);
        if memories.is_empty() {
            return Err(Error::misc(
                    "Program has no memories marked with attribute @external.".to_owned() +
                    " Please make sure that at least one memory is marked as @external."));
        }

        let mem_info = get_mem_info(toplevel);

        let mut modules = vec![top_level(toplevel)];
        for (i, mem) in mem_info.iter().enumerate() {
            modules.push(bram(
                &format!("SINGLE_PORT_BRAM_{}", i),
                mem.width,
                mem.size,
                mem.idx_size,
            ))
        }

        modules.push(axi::AxiInterface::control_module(
            "Control_axi",
            // XXX(nathanielnrn) seems like these should be hard coded for our controller
            12,
            32,
            &memories,
        ));

        for (i, mem) in mem_info.iter().enumerate() {
            modules.push(axi::AxiInterface::memory_module(
                &format!("Memory_controller_axi_{}", i),
                512,
                64,
                mem.width,
                mem.size,
                mem.idx_size,
            ))
        }

        let module_string = modules
            .into_iter()
            .map(|x| x.to_string())
            .collect::<Vec<String>>()
            .join("\n");

        write!(
            file.get_write(),
            r#"`default_nettype none
/* verilator lint_off DECLFILENAME */
{}`default_nettype wire"#,
            module_string,
        )?;

        Ok(())
    }
}

fn external_memories_cells(comp: &ir::Component) -> Vec<ir::RRC<ir::Cell>> {
    comp.cells
        .iter()
        // find external memories
        .filter(|cell_ref| {
            let cell = cell_ref.borrow();
            // NOTE(rachit): We only support one dimensional std_mem_d1 memories
            if cell.attributes.has(ir::BoolAttr::External) {
                if !cell.is_primitive(Some("std_mem_d1")) {
                    panic!("cell `{}' marked with `@external' but is not a std_mem_d1. The AXI generator currently only supports `std_mem_d1'", cell.name())
                } else {
                   true
                }
            } else {
                false
            }
        })
        .cloned()
        .collect()
}

/// Parameters for single dimensional memory
struct MemInfo {
    width: u64,
    size: u64,
    idx_size: u64,
}

// Returns a vector of tuples containing external memory info of [comp] of form:
// [(WIDTH, SIZE, IDX_SIZE)]
fn get_mem_info(comp: &ir::Component) -> Vec<MemInfo> {
    external_memories_cells(comp)
        .iter()
        .map(|cr| {
            let cell = cr.borrow();
            MemInfo {
                width: cell.get_parameter("WIDTH").unwrap(),
                size: cell.get_parameter("SIZE").unwrap(),
                idx_size: cell.get_parameter("IDX_SIZE").unwrap(),
            }
        })
        .collect()
}

// Returns Vec<String> of memory names
fn external_memories(comp: &ir::Component) -> Vec<String> {
    external_memories_cells(comp)
        .iter()
        .map(|cell_ref| cell_ref.borrow().name().to_string())
        .collect()
}

fn top_level(toplevel: &ir::Component) -> v::Module {
    let memories = &external_memories(toplevel);
    let mem_info = get_mem_info(toplevel);
    assert!(!memories.is_empty()); // At least 1 memory should exist within the toplevel
    let mut module = v::Module::new("Toplevel");

    // add system signals
    module.add_input("ap_clk", 1);
    module.add_input("ap_rst_n", 1);
    // module.add_output("ap_interrupt", 1);

    //seems okay if both values are hardcoded
    let control_addr_width = 12;
    let control_data_width = 32;

    // axi control signals
    let axi4 = axi::AxiInterface::control_channels(
        control_addr_width,
        control_data_width,
        "s_axi_control_",
    );
    axi4.add_ports_to(&mut module);

    // add an axi interface for each external memory
    for (idx, _mem) in memories.iter().enumerate() {
        axi::AxiInterface::memory_channels(64, 512, &format!("m{}_axi_", idx))
            .add_ports_to(&mut module);
    }

    // wires
    module.add_stmt(v::Decl::new_wire("ap_start", 1));
    module.add_stmt(v::Decl::new_wire("ap_done", 1));
    module.add_stmt(v::Decl::new_wire("timeout", 32));
    for mem in memories {
        module.add_stmt(v::Decl::new_wire(mem, 64));
    }

    // reset
    module.add_stmt(v::Decl::new_wire("reset", 1));
    module.add_stmt(v::Parallel::Assign(
        "reset".into(),
        v::Expr::new_not("ap_rst_n"),
    ));

    // instantiate control interface
    let base_control_axi_interface = axi::AxiInterface::control_channels(
        control_addr_width,
        control_data_width,
        "",
    );
    let mut control_instance =
        v::Instance::new("inst_control_axi", "Control_axi");
    control_instance.connect("ACLK", "ap_clk");
    control_instance.connect("ARESET", "reset");
    for mem in memories {
        control_instance.connect_ref(mem, mem);
    }
    control_instance.connect("ap_start", "ap_start");
    control_instance.connect("ap_done", "ap_done");
    control_instance.connect("timeout", "timeout");

    for port in base_control_axi_interface.ports() {
        control_instance.connect_ref(&port, &format!("s_axi_control_{}", port));
    }
    module.add_instance(control_instance);

    // and some wires for each memory
    for mem in memories {
        module.add_decl(v::Decl::new_wire(&format!("{}_copy", mem), 1));
        module.add_decl(v::Decl::new_wire(&format!("{}_copy_done", mem), 1));
        module.add_decl(v::Decl::new_wire(&format!("{}_send", mem), 1));
        module.add_decl(v::Decl::new_wire(&format!("{}_send_done", mem), 1));
    }
    host_transfer_fsm(&mut module, memories);

    // instantiate memory controllers
    let base_master_axi_interface =
        axi::AxiInterface::memory_channels(64, 32, "");
    for (idx, mem) in memories.iter().enumerate() {
        let write_data = format!("{}_write_data", mem);
        let read_data = format!("{}_read_data", mem);
        let addr0 = format!("{}_addr0", mem);
        let write_en = format!("{}_write_en", mem);
        let done = format!("{}_done", mem);
        let width = mem_info[idx].width;
        module.add_decl(v::Decl::new_wire(&write_data, width));
        module.add_decl(v::Decl::new_wire(&read_data, width));
        module.add_decl(v::Decl::new_wire(&addr0, mem_info[idx].idx_size));
        module.add_decl(v::Decl::new_wire(&write_en, 1));
        module.add_decl(v::Decl::new_wire(&done, 1));

        let mut memory_instance = v::Instance::new(
            &format!("inst_mem_controller_axi_{}", idx),
            &format!("Memory_controller_axi_{}", idx),
        );
        memory_instance.connect("ACLK", "ap_clk");
        memory_instance.connect(
            "ARESET",
            v::Expr::new_logical_or("reset", "memories_sent"),
        );
        for port in base_master_axi_interface.ports() {
            memory_instance
                .connect_ref(&port, &format!("m{}_axi_{}", idx, port));
        }
        memory_instance.connect_ref("BASE_ADDRESS", mem);
        memory_instance.connect_ref("COPY_FROM_HOST", &format!("{}_copy", mem));
        memory_instance
            .connect_ref("COPY_FROM_HOST_DONE", &format!("{}_copy_done", mem));
        memory_instance.connect_ref("SEND_TO_HOST", &format!("{}_send", mem));
        memory_instance
            .connect_ref("SEND_TO_HOST_DONE", &format!("{}_send_done", mem));

        memory_instance.connect_ref("WRITE_DATA", &write_data);
        memory_instance.connect_ref("READ_DATA", &read_data);
        memory_instance.connect_ref("ADDR", &addr0);
        memory_instance.connect_ref("WE", &write_en);
        memory_instance.connect_ref("DONE", &done);
        module.add_instance(memory_instance);
    }

    // instantiate kernel
    let mut kernel_instance = v::Instance::new("kernel_inst", "main");
    module.add_decl(v::Decl::new_wire("kernel_start", 1));
    module.add_decl(v::Decl::new_wire("kernel_done", 1));
    kernel_instance.connect_ref("clk", "ap_clk");
    kernel_instance.connect_ref("go", "kernel_start");
    kernel_instance
        .connect("reset", v::Expr::new_logical_or("reset", "memories_sent"));
    kernel_instance.connect_ref("done", "kernel_done");
    for mem in memories {
        let read_data = format!("{}_read_data", mem);
        let done = format!("{}_done", mem);
        let addr0 = format!("{}_addr0", mem);
        let write_data = format!("{}_write_data", mem);
        let write_en = format!("{}_write_en", mem);
        kernel_instance.connect_ref(&read_data, &read_data);
        kernel_instance.connect_ref(&done, &done);
        kernel_instance.connect_ref(&addr0, &addr0);
        kernel_instance.connect_ref(&write_data, &write_data);
        kernel_instance.connect_ref(&write_en, &write_en);
    }
    module.add_instance(kernel_instance);

    // add timeout counter
    module.add_decl(v::Decl::new_reg("counter", 32));
    module.add_stmt(utils::cond_non_blk_assign(
        "ap_clk",
        "counter",
        vec![
            (
                Some("ap_start".into()),
                v::Expr::new_add("counter", v::Expr::new_ulit_dec(32, "1")),
            ),
            (None, v::Expr::new_ulit_dec(32, "0")),
        ],
    ));

    // done signal
    module.add_stmt(v::Parallel::Assign(
        "ap_done".into(),
        "memories_sent".into(),
    ));

    module
}

fn host_transfer_fsm(module: &mut v::Module, memories: &[String]) {
    module.add_decl(v::Decl::new_wire("memories_copied", 1));
    module.add_decl(v::Decl::new_reg("memories_sent", 1));
    module.add_stmt(v::Parallel::Assign(
        "memories_copied".into(),
        if memories.is_empty() {
            panic!("Need some memories")
        } else if memories.len() == 1 {
            format!("{}_copy_done", memories[0]).into()
        } else {
            memories[1..].iter().fold(
                format!("{}_copy_done", memories[0]).into(),
                |acc, elem| {
                    v::Expr::new_logical_and(acc, format!("{}_copy_done", elem))
                },
            )
        },
    ));
    let copy_start_assigns: Vec<v::Expr> = memories
        .iter()
        .map(|mem| format!("{}_copy", mem).into())
        .collect();
    let send_start_assigns: Vec<v::Expr> = memories
        .iter()
        .map(|mem| format!("{}_send", mem).into())
        .collect();
    let fsm = fsm::LinearFsm::new("host_txn_", "ap_clk", "reset")
        .state("idle", &[], "ap_start") // idle state
        .state("copy", &copy_start_assigns, "memories_copied") // copy memory state
        .state("run_kernel", &["kernel_start".into()], "kernel_done") // run kernel state
        .state("send", &send_start_assigns, "memories_sent"); // send memory to host state

    let mut parallel = v::ParallelProcess::new_always();
    parallel.set_event(v::Sequential::new_posedge("ap_clk"));

    let mut ifelse = v::SequentialIfElse::new(fsm.state_is("send"));
    ifelse.add_seq(v::Sequential::new_nonblk_assign(
        "memories_sent",
        memories[1..].iter().fold(
            format!("{}_send_done", memories[0]).into(),
            |acc, elem| {
                v::Expr::new_bit_and(acc, format!("{}_send_done", elem))
            },
        ),
    ));

    ifelse.set_else(v::Sequential::new_nonblk_assign("memories_sent", 0));
    parallel.add_seq(ifelse);
    module.add_stmt(parallel);
    fsm.emit(module);
}