1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use crate::{
    compute::{StaticKernel, WorkGroup},
    element::WgpuElement,
    kernel::{build_info, into_contiguous, KernelSettings, SourceTemplate, StaticKernelSource},
    kernel_wgsl,
    tensor::WgpuTensor,
};

kernel_wgsl!(MatmulNaiveRaw, "../../template/matmul/naive.wgsl");

struct MatmulNaive<const WORKGROUP_SIZE_X: usize, const WORKGROUP_SIZE_Y: usize>;

impl<const WORKGROUP_SIZE_X: usize, const WORKGROUP_SIZE_Y: usize> StaticKernelSource
    for MatmulNaive<WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y>
{
    fn source() -> SourceTemplate {
        MatmulNaiveRaw::source()
            .register("block_size_m", WORKGROUP_SIZE_X.to_string())
            .register("block_size_n", WORKGROUP_SIZE_Y.to_string())
    }
}

/// Matrix multiplication using naive algorithm with workgroups of size 16
pub fn matmul_naive_default<E: WgpuElement, const D: usize>(
    lhs: WgpuTensor<E, D>,
    rhs: WgpuTensor<E, D>,
    output: WgpuTensor<E, D>,
) -> WgpuTensor<E, D> {
    matmul_naive::<E, D, 16, 16>(lhs, rhs, output)
}

/// Matrix multiplication using naive algorithm with custom workgroup sizes
pub fn matmul_naive<
    E: WgpuElement,
    const D: usize,
    const WORKGROUP_SIZE_X: usize,
    const WORKGROUP_SIZE_Y: usize,
>(
    lhs: WgpuTensor<E, D>,
    rhs: WgpuTensor<E, D>,
    output: WgpuTensor<E, D>,
) -> WgpuTensor<E, D> {
    lhs.assert_is_on_same_device(&rhs);

    let lhs = into_contiguous(lhs);
    let rhs = into_contiguous(rhs);

    let num_rows = lhs.shape.dims[D - 2];
    let num_cols = rhs.shape.dims[D - 1];

    // set number of workgroups
    let blocks_needed_in_x = f32::ceil(num_rows as f32 / WORKGROUP_SIZE_X as f32) as u32;
    let blocks_needed_in_y = f32::ceil(num_cols as f32 / WORKGROUP_SIZE_Y as f32) as u32;
    let mut num_iter = 1;
    for i in 0..D - 2 {
        num_iter *= output.shape.dims[i];
    }
    let workgroup = WorkGroup::new(blocks_needed_in_x, blocks_needed_in_y, num_iter as u32);

    let kernel = StaticKernel::<
        KernelSettings<
            MatmulNaive<WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y>,
            E,
            i32,
            WORKGROUP_SIZE_X,
            WORKGROUP_SIZE_Y,
            1,
        >,
    >::new(workgroup);

    let info = build_info(&[&lhs, &rhs, &output]);

    let info_handle = lhs.client.create(bytemuck::cast_slice(&info));

    lhs.client.execute(
        Box::new(kernel),
        &[&lhs.handle, &rhs.handle, &output.handle, &info_handle],
    );

    output
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::kernel::matmul::utils::tests::{same_as_reference, same_as_reference_swapped_dims};

    #[test]
    pub fn test_matmul_naive_straightforward() {
        test_with_params::<2, 2>(1, 2, 1, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_shapes_smaller_than_blocks() {
        test_with_params::<16, 16>(8, 8, 8, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_n_smaller_than_m() {
        test_with_params::<2, 2>(8, 8, 3, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_m_smaller_than_n() {
        test_with_params::<2, 2>(3, 8, 8, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_k_smaller_than_m_n() {
        test_with_params::<2, 2>(8, 3, 8, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_k_larger_than_m_n() {
        test_with_params::<2, 2>(8, 48, 8, 1, 1);
    }

    #[test]
    pub fn test_matmul_naive_multibatch_1_dim() {
        test_with_params::<2, 2>(8, 8, 8, 3, 1);
    }

    #[test]
    pub fn test_matmul_naive_multibatch_2_dims() {
        test_with_params::<2, 2>(8, 8, 8, 3, 4);
    }

    #[test]
    pub fn test_matmul_naive_blocks_divide_shapes_unevenly() {
        test_with_params::<3, 3>(7, 7, 7, 1, 1);
    }

    fn test_with_params<const WORKGROUP_SIZE_X: usize, const WORKGROUP_SIZE_Y: usize>(
        m: usize,
        k: usize,
        n: usize,
        batch_1: usize,
        batch_2: usize,
    ) {
        let func = matmul_naive::<f32, 4, WORKGROUP_SIZE_X, WORKGROUP_SIZE_Y>;
        let shape_lhs = [batch_1, batch_2, m, k];
        let shape_rhs = [batch_1, batch_2, k, n];
        same_as_reference(func, shape_lhs, shape_rhs);
    }

    #[test]
    fn test_matmul_naive_swapped_batches_no_padding() {
        let matmul_func = matmul_naive::<f32, 4, 2, 2>;
        let swap = [0, 1];
        let shape_lhs = [3, 2, 4, 4];
        let shape_rhs = [3, 2, 4, 4];
        same_as_reference_swapped_dims(matmul_func, swap, swap, shape_lhs, shape_rhs);
    }

    #[test]
    fn test_matmul_naive_swapped_row_col_no_padding() {
        let matmul_func = matmul_naive::<f32, 4, 2, 2>;
        let swap_lhs = [0, 0];
        let swap_rhs = [2, 3];
        let shape_lhs = [3, 2, 4, 4];
        let shape_rhs = [3, 2, 4, 4];
        same_as_reference_swapped_dims(matmul_func, swap_lhs, swap_rhs, shape_lhs, shape_rhs);
    }

    #[test]
    fn test_matmul_naive_swapped_row_with_batch_no_padding() {
        let matmul_func = matmul_naive::<f32, 4, 2, 2>;
        let swap_lhs = [0, 3];
        let swap_rhs = [0, 2];
        let shape_lhs = [4, 4, 4, 4];
        let shape_rhs = [4, 4, 4, 4];
        same_as_reference_swapped_dims(matmul_func, swap_lhs, swap_rhs, shape_lhs, shape_rhs);
    }
}