use alloc::format;
use alloc::vec::Vec;
use crate::{tensor::Shape, Element, ElementConversion};
use libm::{pow, round};
use rand::{distributions::Standard, Rng, RngCore};
#[derive(serde::Serialize, serde::Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct DataSerialize<E> {
pub value: Vec<E>,
pub shape: Vec<usize>,
}
#[derive(new, Debug, Clone, PartialEq, Eq)]
pub struct Data<E, const D: usize> {
pub value: Vec<E>,
pub shape: Shape<D>,
}
#[derive(Clone, Copy)]
pub enum Distribution<E> {
Standard,
Bernoulli(f64),
Uniform(E, E),
Normal(f64, f64),
}
#[derive(new)]
pub struct DistributionSampler<'a, E, R>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
R: RngCore,
{
kind: DistributionSamplerKind<E>,
rng: &'a mut R,
}
pub enum DistributionSamplerKind<E>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
{
Standard(rand::distributions::Standard),
Uniform(rand::distributions::Uniform<E>),
Bernoulli(rand::distributions::Bernoulli),
Normal(rand_distr::Normal<f64>),
}
impl<'a, E, R> DistributionSampler<'a, E, R>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
E: Element,
R: RngCore,
{
pub fn sample(&mut self) -> E {
match &self.kind {
DistributionSamplerKind::Standard(distribution) => self.rng.sample(distribution),
DistributionSamplerKind::Uniform(distribution) => self.rng.sample(distribution),
DistributionSamplerKind::Bernoulli(distribution) => {
if self.rng.sample(distribution) {
1.elem()
} else {
0.elem()
}
}
DistributionSamplerKind::Normal(distribution) => self.rng.sample(distribution).elem(),
}
}
}
impl<E> Distribution<E>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
{
pub fn sampler<R: RngCore>(self, rng: &'_ mut R) -> DistributionSampler<'_, E, R> {
let kind = match self {
Distribution::Standard => {
DistributionSamplerKind::Standard(rand::distributions::Standard {})
}
Distribution::Uniform(low, high) => {
DistributionSamplerKind::Uniform(rand::distributions::Uniform::new(low, high))
}
Distribution::Bernoulli(prob) => DistributionSamplerKind::Bernoulli(
rand::distributions::Bernoulli::new(prob).unwrap(),
),
Distribution::Normal(mean, std) => {
DistributionSamplerKind::Normal(rand_distr::Normal::new(mean, std).unwrap())
}
};
DistributionSampler::new(kind, rng)
}
}
impl<E> Distribution<E>
where
E: Element,
{
pub fn convert<EOther: Element>(self) -> Distribution<EOther> {
match self {
Distribution::Standard => Distribution::Standard,
Distribution::Uniform(a, b) => {
Distribution::Uniform(EOther::from_elem(a), EOther::from_elem(b))
}
Distribution::Bernoulli(prob) => Distribution::Bernoulli(prob),
Distribution::Normal(mean, std) => Distribution::Normal(mean, std),
}
}
}
impl<const D: usize, E: Element> Data<E, D> {
pub fn convert<EOther: Element>(self) -> Data<EOther, D> {
let value: Vec<EOther> = self.value.into_iter().map(|a| a.elem()).collect();
Data {
value,
shape: self.shape,
}
}
}
impl<E: Element> DataSerialize<E> {
pub fn convert<EOther: Element>(self) -> DataSerialize<EOther> {
let value: Vec<EOther> = self.value.into_iter().map(|a| a.elem()).collect();
DataSerialize {
value,
shape: self.shape,
}
}
}
impl<const D: usize> Data<bool, D> {
pub fn convert<E: Element>(self) -> Data<E, D> {
let value: Vec<E> = self.value.into_iter().map(|a| (a as i64).elem()).collect();
Data {
value,
shape: self.shape,
}
}
}
impl<E: Element, const D: usize> Data<E, D> {
pub fn random<R: RngCore>(shape: Shape<D>, distribution: Distribution<E>, rng: &mut R) -> Self {
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(E::random(distribution, rng));
}
Data::new(data, shape)
}
}
impl<E: core::fmt::Debug, const D: usize> Data<E, D>
where
E: Element,
{
pub fn zeros<S: Into<Shape<D>>>(shape: S) -> Data<E, D> {
let shape = shape.into();
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(0.elem());
}
Data::new(data, shape)
}
pub fn zeros_(shape: Shape<D>, _kind: E) -> Data<E, D> {
Self::zeros(shape)
}
}
impl<E: core::fmt::Debug, const D: usize> Data<E, D>
where
E: Element,
{
pub fn ones(shape: Shape<D>) -> Data<E, D> {
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(1.elem());
}
Data::new(data, shape)
}
pub fn ones_(shape: Shape<D>, _kind: E) -> Data<E, D> {
Self::ones(shape)
}
}
impl<E: core::fmt::Debug + Copy, const D: usize> Data<E, D> {
pub fn serialize(&self) -> DataSerialize<E> {
DataSerialize {
value: self.value.clone(),
shape: self.shape.dims.to_vec(),
}
}
}
impl<E: Into<f64> + Clone + core::fmt::Debug + PartialEq, const D: usize> Data<E, D> {
pub fn assert_approx_eq(&self, other: &Self, precision: usize) {
assert_eq!(self.shape, other.shape);
let mut eq = true;
let iter = self
.value
.clone()
.into_iter()
.zip(other.value.clone().into_iter());
for (a, b) in iter {
let a: f64 = a.into();
let b: f64 = b.into();
let a = round(pow(10.0_f64, precision as f64) * a);
let b = round(pow(10.0_f64, precision as f64) * b);
if a != b {
eq = false;
}
}
if !eq {
assert_eq!(self.value, other.value);
}
}
pub fn assert_in_range(&self, min: E, max: E) {
let min: f64 = min.into();
let max: f64 = max.into();
for item in self.value.iter() {
let item: f64 = item.clone().into();
if item < min || item > max {
panic!("Element ({item}) is not within the range of ({min},{max})");
}
}
}
}
impl<const D: usize> Data<usize, D> {
pub fn from_usize<O: num_traits::FromPrimitive>(self) -> Data<O, D> {
let value: Vec<O> = self
.value
.into_iter()
.map(|a| num_traits::FromPrimitive::from_usize(a).unwrap())
.collect();
Data {
value,
shape: self.shape,
}
}
}
impl<E: Clone, const D: usize> From<&DataSerialize<E>> for Data<E, D> {
fn from(data: &DataSerialize<E>) -> Self {
let mut dims = [0; D];
dims[..D].copy_from_slice(&data.shape[..D]);
Data::new(data.value.clone(), Shape::new(dims))
}
}
impl<E, const D: usize> From<DataSerialize<E>> for Data<E, D> {
fn from(data: DataSerialize<E>) -> Self {
let mut dims = [0; D];
dims[..D].copy_from_slice(&data.shape[..D]);
Data::new(data.value, Shape::new(dims))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize> From<[E; A]> for Data<E, 1> {
fn from(elems: [E; A]) -> Self {
let mut data = Vec::with_capacity(2 * A);
for elem in elems.into_iter() {
data.push(elem);
}
Data::new(data, Shape::new([A]))
}
}
impl<E: core::fmt::Debug + Copy> From<&[E]> for Data<E, 1> {
fn from(elems: &[E]) -> Self {
let mut data = Vec::with_capacity(elems.len());
for elem in elems.iter() {
data.push(*elem);
}
Data::new(data, Shape::new([elems.len()]))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize, const B: usize> From<[[E; B]; A]> for Data<E, 2> {
fn from(elems: [[E; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
data.push(elem);
}
}
Data::new(data, Shape::new([A, B]))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize, const B: usize, const C: usize>
From<[[[E; C]; B]; A]> for Data<E, 3>
{
fn from(elems: [[[E; C]; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B * C);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
for elem in elem.into_iter().take(C) {
data.push(elem);
}
}
}
Data::new(data, Shape::new([A, B, C]))
}
}
impl<
E: core::fmt::Debug + Copy,
const A: usize,
const B: usize,
const C: usize,
const D: usize,
> From<[[[[E; D]; C]; B]; A]> for Data<E, 4>
{
fn from(elems: [[[[E; D]; C]; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B * C * D);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
for elem in elem.into_iter().take(C) {
for elem in elem.into_iter().take(D) {
data.push(elem);
}
}
}
}
Data::new(data, Shape::new([A, B, C, D]))
}
}
impl<E: core::fmt::Debug, const D: usize> core::fmt::Display for Data<E, D> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str(format!("{:?}", &self.value).as_str())
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{rngs::StdRng, SeedableRng};
#[test]
fn should_have_right_num_elements() {
let shape = Shape::new([3, 5, 6]);
let num_elements = shape.num_elements();
let data =
Data::<f32, 3>::random(shape, Distribution::Standard, &mut StdRng::from_entropy());
assert_eq!(num_elements, data.value.len());
}
#[test]
fn should_have_right_shape() {
let data = Data::from([[3.0, 5.0, 6.0]]);
assert_eq!(data.shape, Shape::new([1, 3]));
let data = Data::from([[4.0, 5.0, 8.0], [3.0, 5.0, 6.0]]);
assert_eq!(data.shape, Shape::new([2, 3]));
let data = Data::from([3.0, 5.0, 6.0]);
assert_eq!(data.shape, Shape::new([3]));
}
}