Struct burn_tensor::Tensor
source · pub struct Tensor<B, const D: usize, K = Float>where
B: Backend,
K: TensorKind<B>,{ /* private fields */ }
Expand description
A tensor with a given backend, shape and data type.
Implementations§
source§impl<const D: usize, B: AutodiffBackend> Tensor<B, D>
impl<const D: usize, B: AutodiffBackend> Tensor<B, D>
sourcepub fn grad(&self, grads: &B::Gradients) -> Option<Tensor<B::InnerBackend, D>>
pub fn grad(&self, grads: &B::Gradients) -> Option<Tensor<B::InnerBackend, D>>
Get the gradients of a tensor if it exist.
Returns a new reference to the same tensor. Therefore the same grad tensor can be accessed multiple times. If you only need to get the gradients one time, consider using grad_remove for better performance.
sourcepub fn grad_remove(
&self,
grads: &mut B::Gradients,
) -> Option<Tensor<B::InnerBackend, D>>
pub fn grad_remove( &self, grads: &mut B::Gradients, ) -> Option<Tensor<B::InnerBackend, D>>
Remove the grad tensor from the grads struct returning the result.
sourcepub fn grad_replace(
&self,
grads: &mut B::Gradients,
grad: Tensor<B::InnerBackend, D>,
)
pub fn grad_replace( &self, grads: &mut B::Gradients, grad: Tensor<B::InnerBackend, D>, )
Replace the grad tensor from the grads struct with the provided gradient.
source§impl<const D: usize, B: AutodiffBackend, K: BasicAutodiffOps<B>> Tensor<B, D, K>
impl<const D: usize, B: AutodiffBackend, K: BasicAutodiffOps<B>> Tensor<B, D, K>
sourcepub fn inner(self) -> Tensor<B::InnerBackend, D, K::InnerKind>
pub fn inner(self) -> Tensor<B::InnerBackend, D, K::InnerKind>
Returns the inner tensor without the autodiff information.
sourcepub fn from_inner(inner: Tensor<B::InnerBackend, D, K::InnerKind>) -> Self
pub fn from_inner(inner: Tensor<B::InnerBackend, D, K::InnerKind>) -> Self
source§impl<B, const D: usize, K> Tensor<B, D, K>
impl<B, const D: usize, K> Tensor<B, D, K>
sourcepub fn into_primitive(self) -> K::Primitive<D>
pub fn into_primitive(self) -> K::Primitive<D>
Converts the tensor into a primitive tensor.
sourcepub fn from_primitive(tensor: K::Primitive<D>) -> Self
pub fn from_primitive(tensor: K::Primitive<D>) -> Self
Converts from a primitive tensor into a tensor.
sourcepub fn empty<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
pub fn empty<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
Create an empty tensor of the given shape.
sourcepub fn dims(&self) -> [usize; D]
pub fn dims(&self) -> [usize; D]
Returns the dimensions of the current tensor.
Equivalent to tensor.shape().dims
.
sourcepub fn reshape<const D2: usize, S: ReshapeArgs<D2>>(
self,
shape: S,
) -> Tensor<B, D2, K>
pub fn reshape<const D2: usize, S: ReshapeArgs<D2>>( self, shape: S, ) -> Tensor<B, D2, K>
Reshape the tensor to have the given shape.
A -1
in the shape is used to infer the remaining dimensions, e.g.: [2, -1]
will reshape the tensor with [2, 3, 4] dimensions to [2, 12].
A 0
in the shape instructs to keep the current dimension from the original tensor,
e.g.: [2, 0, 4]
will reshape the tensor with [2, 3, 4] dimensions to [2, 3, 4].
This is useful when reshaping tensors with unknown dimensions and combining with -1
to infer the remaining dimensions, e.g. [0, -1]
will reshape the tensor
with [1, 3, 4] dimensions to [1, 12].
§Arguments
shape
: The new shape of the tensor.
§Panics
- If the tensor contains more than one
-1
in the shape. - If the tensor contains values that are not positive (other than -1).
- If the shape does not match the number of elements of the original shape.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::Tensor;
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 3>::ones([2, 3, 4], &device);
// Given a 3D tensor with dimensions (2, 3, 4), reshape it to (2, 12)
let reshaped_tensor: Tensor::<B, 2> = tensor.reshape([2, -1]);
// The resulting tensor will have dimensions (2, 12).
println!("{:?}", reshaped_tensor.shape());
}
sourcepub fn permute(self, axes: [isize; D]) -> Tensor<B, D, K>
pub fn permute(self, axes: [isize; D]) -> Tensor<B, D, K>
Permute the dimensions of the tensor.
§Arguments
axes
- The new order of the dimensions. The length of the axes must be equal to the number of dimensions of the tensor. The values must be unique and in the range of the number of dimensions. The values can be negative, in which case they are used as an offset from the end.
§Returns
The tensor with the dimensions permuted.
sourcepub fn movedim<S1: MovedimArgs, S2: MovedimArgs>(
self,
src: S1,
dst: S2,
) -> Tensor<B, D, K>
pub fn movedim<S1: MovedimArgs, S2: MovedimArgs>( self, src: S1, dst: S2, ) -> Tensor<B, D, K>
Moves the dimension(s) of input at the position(s) in source to the position(s) in destination.
Other dimensions of input that are not explicitly moved remain in their original order and appear at the positions not specified in destination.
§Arguments
-
src
- The dimension(s) to move. The values must be unique and in the range of the number of dimensions. The values can be negative, in which case they are used as an offset from the end. -
dst
- Destination positions for each of the original dims. These must also be unique.
§Panics
- If the source and destination dimensions are not of the same length.
- If the source and destination vectors contain duplicate values.
- If the source and destination vectors contain values that are out of bounds.
§Returns
The tensor with the dimensions moved.
sourcepub fn flip<const N: usize>(self, axes: [isize; N]) -> Tensor<B, D, K>
pub fn flip<const N: usize>(self, axes: [isize; N]) -> Tensor<B, D, K>
Reverse the order of elements in the tensor along the given dimensions.
§Arguments
axes
- The dimensions to reverse. The values must be unique and in the range of the number of dimensions. The values can be negative, in which case they are used as an offset from the end.
§Returns
The tensor with the axes flipped.
sourcepub fn flatten<const D2: usize>(
self,
start_dim: usize,
end_dim: usize,
) -> Tensor<B, D2, K>
pub fn flatten<const D2: usize>( self, start_dim: usize, end_dim: usize, ) -> Tensor<B, D2, K>
Flatten the tensor along a given range of dimensions.
This function collapses the specified range of dimensions into a single dimension, effectively flattening the tensor in that range.
§Arguments
start_dim
: The starting dimension of the range to be flattened.end_dim
: The ending dimension of the range to be flattened (inclusive).
§Type Parameters
D2
: The resulting number of dimensions in the flattened tensor.
§Returns
A new Tensor<B, D2, K>
instance with the specified range of dimensions flattened.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 3>::ones(Shape::new([2, 3, 4]), &device);
// Given a 3D tensor with dimensions (2, 3, 4), flatten the dimensions between indices 1 and 2:
let flattened_tensor: Tensor::<B, 2> = tensor.flatten(1, 2);
// The resulting tensor will have dimensions (2, 12).
println!("{:?}", flattened_tensor.shape());
}
sourcepub fn squeeze<const D2: usize>(self, dim: usize) -> Tensor<B, D2, K>
pub fn squeeze<const D2: usize>(self, dim: usize) -> Tensor<B, D2, K>
Squeeze the tensor along the given dimension, removing the specified dimension of size one, and effectively reducing the rank of the tensor by one.
§Arguments
dim
: The dimension to be squeezed.
§Type Parameters
- ‘D2’: The resulting number of dimensions in the squeezed tensor.
§Returns
A new Tensor<B, D2, K>
instance with the specified dimension removed.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 3>::ones(Shape::new([2, 1, 4]), &device);
// Given a 3D tensor with dimensions (2, 1, 4), squeeze the dimension 1
let squeezed_tensor: Tensor::<B, 2> = tensor.squeeze(1);
// Resulting tensor will have dimensions (2, 4)
println!("{:?}", squeezed_tensor.shape());
}
sourcepub fn squeeze_dims<const D2: usize>(self, dims: &[isize]) -> Tensor<B, D2, K>
pub fn squeeze_dims<const D2: usize>(self, dims: &[isize]) -> Tensor<B, D2, K>
Removes specified dimensions of size 1 from a tensor’s shape. This function takes a tensor and
an array of dimensions (dims
) to be squeezed. If dims
is provided, only the dimensions
specified in this array will be removed. Each dimension in dims
should correspond to a size of 1
in the tensor; otherwise, the dimension will not be squeezed. If dims
is empty, all single-dimensional entries
in the tensor will be removed. If entries in dims
are negative, then dimensions will be counted
from the back.
§Arguments
dims
: The dimension(s) to be squeezed.
§Type Parameters
- ‘D2’: The resulting number of dimensions in the squeezed tensor.
§Returns
A new Tensor<B, D2, K>
instance with the specified dimensions removed.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 4>::ones(Shape::new([2, 1, 4, 1]), &device);
// Given a 4D tensor with dimensions (2, 1, 4, 1), squeeze the 1 and 3 dimensions
let squeezed_tensor: Tensor::<B, 2> = tensor.squeeze_dims(&[1, 3]);
// Resulting tensor will have dimensions (2, 4)
println!("{:?}", squeezed_tensor.shape());
}
sourcepub fn unsqueeze<const D2: usize>(self) -> Tensor<B, D2, K>
pub fn unsqueeze<const D2: usize>(self) -> Tensor<B, D2, K>
Unsqueeze the current tensor. Create new dimensions to fit the given size.
If the output size is higher than the current tensor.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 2>::ones(Shape::new([3, 3]), &device);
let tensor = tensor.unsqueeze::<4>();
println!("{:?}", tensor.shape());
// Shape { dims: [1, 1, 3, 3] }
}
sourcepub fn unsqueeze_dim<const D2: usize>(self, dim: usize) -> Tensor<B, D2, K>
pub fn unsqueeze_dim<const D2: usize>(self, dim: usize) -> Tensor<B, D2, K>
Creates a new tensor with a dimension of size one inserted at the specified position.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 2>::ones(Shape::new([3, 3]), &device);
let tensor: Tensor<B, 3> = tensor.unsqueeze_dim(1);
println!("{:?}", tensor.shape());
// Shape { dims: [3, 1, 3] }
}
sourcepub fn unsqueeze_dims<const D2: usize>(self, axes: &[isize]) -> Tensor<B, D2, K>
pub fn unsqueeze_dims<const D2: usize>(self, axes: &[isize]) -> Tensor<B, D2, K>
Creates a new tensor with added dimensions of size one inserted at the specified indices. The indices can be negative, in which case they are counted from the last to the first dimension. the axes can contain duplicates, in which case the number of dimensions inserted at the index is the number of duplicates.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 3>::ones(Shape::new([3, 4, 5]), &device);
let tensor: Tensor<B, 6> = tensor.unsqueeze_dims(&[0, -1, -1]);
println!("{:?}", tensor.shape());
// Shape { dims: [1, 3, 4, 5, 1, 1] }
}
sourcepub fn slice<const D2: usize, R: RangesArg<D2>>(self, ranges: R) -> Self
pub fn slice<const D2: usize, R: RangesArg<D2>>(self, ranges: R) -> Self
Returns a tensor containing the elements selected from the given ranges.
§Arguments
ranges
- A type implementing theRangesArg
trait, which can be:- An array of
core::ops::Range<usize>
- An array of
Option<(i64, i64)>
- An array of
(i64, i64)
tuples
- An array of
§Behavior
- Supports partial and full slicing in any number of dimensions.
- Missing ranges are treated as full slices if D > D2.
- Handles negative indices by wrapping around from the end of the dimension.
- Clamps ranges to the tensor’s dimensions if they exceed the bounds.
- For
Option<(i64, i64)>
ranges,None
selects the full range of that dimension.
§Panics
- If the number of ranges provided exceeds the tensor’s dimensions.
- If a range is descending (e.g., 2..1) or empty (e.g., 1..1).
§Examples
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = B::Device::default();
// 1D slicing
let tensor = Tensor::<B, 1, burn_tensor::Int>::arange(0..5, &device);
let slice = tensor.slice([1..4]);
assert_eq!(slice.into_data().to_vec::<i32>().unwrap(), vec![1i32, 2, 3]);
// 2D slicing
let tensor = Tensor::<B, 2>::ones(Shape::new([3, 4]), &device);
let slice = tensor.slice([1..3, 0..2]);
assert_eq!(slice.dims(), [2, 2]);
// Using negative indices
let tensor = Tensor::<B, 1, burn_tensor::Int>::arange(0..5, &device);
let slice = tensor.slice([(1, -1)]); // Equivalent to 1..4
assert_eq!(slice.into_data().to_vec::<i32>().unwrap(), vec![1i32, 2, 3]);
// Using Option<(i64, i64)>
let tensor = Tensor::<B, 1, burn_tensor::Int>::arange(0..12, &device).reshape([3, 4]);
let slice = tensor.slice([Some((1, -1)), None]); // Select rows 1 and 2, all columns
assert_eq!(slice.dims(), [2, 4]);
}
§Note
This function uses the RangesArg
trait for flexible range specification. The trait
handles the conversion of various range formats and applies clamping and negative
index handling internally.
sourcepub fn slice_assign<const D2: usize>(
self,
ranges: [Range<usize>; D2],
values: Self,
) -> Self
pub fn slice_assign<const D2: usize>( self, ranges: [Range<usize>; D2], values: Self, ) -> Self
Returns a copy of the current tensor with the selected elements changed to the new ones at the selected indices.
§Panics
- If a range exceeds the number of elements on a dimension.
- If the given values don’t match the given ranges.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::Tensor;
fn example<B: Backend>() {
let device = B::Device::default();
let tensor = Tensor::<B, 3>::ones([2, 3, 3], &device);
let values = Tensor::<B, 3>::zeros([1, 1, 1], &device);
let tensor_sliced = tensor.slice_assign([0..1, 0..1, 0..1], values);
println!("{:?}", tensor_sliced.dims()); // [2, 3, 3]
}
sourcepub fn into_data(self) -> TensorData
pub fn into_data(self) -> TensorData
Converts the data of the current tensor.
sourcepub fn to_data(&self) -> TensorData
pub fn to_data(&self) -> TensorData
Returns the data of the current tensor.
sourcepub async fn into_data_async(self) -> TensorData
pub async fn into_data_async(self) -> TensorData
Returns the data of the current tensor.
sourcepub async fn to_data_async(&self) -> TensorData
pub async fn to_data_async(&self) -> TensorData
Returns the data of the current tensor.
sourcepub fn from_data<T>(data: T, device: &B::Device) -> Selfwhere
T: Into<TensorData>,
pub fn from_data<T>(data: T, device: &B::Device) -> Selfwhere
T: Into<TensorData>,
Create a tensor from the given data on the given device.
sourcepub fn repeat_dim(self, dim: usize, times: usize) -> Self
pub fn repeat_dim(self, dim: usize, times: usize) -> Self
Repeat the tensor along the given dimension.
sourcepub fn repeat(self, sizes: &[usize]) -> Self
pub fn repeat(self, sizes: &[usize]) -> Self
Repeat the tensor along the given dimensions.
§Arguments
sizes
: Borrowed slice of the number of times to repeat each dimension.
sourcepub fn equal(self, other: Self) -> Tensor<B, D, Bool>
pub fn equal(self, other: Self) -> Tensor<B, D, Bool>
Applies element-wise equal comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn not_equal(self, other: Self) -> Tensor<B, D, Bool>
pub fn not_equal(self, other: Self) -> Tensor<B, D, Bool>
Applies element-wise non-equality comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn cat(tensors: Vec<Self>, dim: usize) -> Self
pub fn cat(tensors: Vec<Self>, dim: usize) -> Self
Concatenates all tensors into a new one along the given dimension.
§Panics
If all tensors don’t have the same shape.
sourcepub fn stack<const D2: usize>(
tensors: Vec<Tensor<B, D, K>>,
dim: usize,
) -> Tensor<B, D2, K>
pub fn stack<const D2: usize>( tensors: Vec<Tensor<B, D, K>>, dim: usize, ) -> Tensor<B, D2, K>
Concatenates all tensors into a new one along a new dimension.
§Panics
If all tensors don’t have the same shape. Given dimension is not with range of 0..D2
sourcepub fn narrow(self, dim: usize, start: usize, length: usize) -> Self
pub fn narrow(self, dim: usize, start: usize, length: usize) -> Self
Returns a new tensor with the given dimension narrowed to the given range.
§Panics
- If the dimension is greater than the number of dimensions of the tensor.
- If the given range exceeds the number of elements on the given dimension.
§Returns
A new tensor with the given dimension narrowed to the given range.
sourcepub fn chunk(self, chunks: usize, dim: usize) -> Vec<Self>
pub fn chunk(self, chunks: usize, dim: usize) -> Vec<Self>
Attempts to split the tensor along the given dimension into chunks. May return less chunks than requested if the tensor size is not divisible by the number of chunks.
When the given dimension is evenly divisible by the number of chunks, the chunks will be of equal size. Otherwise all chunks will be of equal size except for the last one.
§Panics
If the dimension is greater than the number of dimensions of the tensor.
§Returns
A vector of tensors.
sourcepub fn any(self) -> Tensor<B, 1, Bool>
pub fn any(self) -> Tensor<B, 1, Bool>
Tests if any element in the tensor
evaluates to True.
§Arguments
tensor
- The tensor to test. All input tensor types (Float, Int, Bool) are supported.
§Returns
A boolean tensor Tensor<B, 1, Bool>
containing a single element, True if any element in the input tensor
evaluates to True, False otherwise.
sourcepub fn any_dim(self, dim: usize) -> Tensor<B, D, Bool>
pub fn any_dim(self, dim: usize) -> Tensor<B, D, Bool>
Tests if any element in the tensor
evaluates to True along a given dimension dim
.
§Arguments
tensor
- The tensor to test. All input tensor types (Float, Int, Bool) are supported.dim
- The axis along which to test.
§Returns
A boolean tensor Tensor<B, D, Bool>
with the same size as input tensor
, except in the dim
axis
where the size is 1. The elem in the dim
axis is True if any element along this dim in the input
evaluates to True, False otherwise.
sourcepub fn all_dim(self, dim: usize) -> Tensor<B, D, Bool>
pub fn all_dim(self, dim: usize) -> Tensor<B, D, Bool>
Tests if all elements in the tensor
evaluate to True along a given dimension dim
.
§Arguments
tensor
- The tensor to test. All input tensor types (Float, Int, Bool) are supported.dim
- The axis along which to test.
§Returns
A boolean tensor Tensor<B, D, Bool>
with the same size as input tensor
, except in the dim
axis
where the size is 1. The elem in the dim
axis is True if all elements along this dim in the input
evaluates to True, False otherwise.
sourcepub fn into_scalar(self) -> K::Elem
pub fn into_scalar(self) -> K::Elem
Convert the tensor into a scalar.
§Panics
If the tensor doesn’t have one element. If the backend fails to read the tensor data synchronously.
sourcepub async fn into_scalar_async(self) -> K::Elem
pub async fn into_scalar_async(self) -> K::Elem
sourcepub fn expand<const D2: usize, S: BroadcastArgs<D, D2>>(
self,
shape: S,
) -> Tensor<B, D2, K>
pub fn expand<const D2: usize, S: BroadcastArgs<D, D2>>( self, shape: S, ) -> Tensor<B, D2, K>
Broadcast the tensor to the given shape.
§Arguments
shape
- The shape to broadcast the tensor to. Can contain -1 for dimensions that should be inferred. The number of elements in the shape must be greater or equal as the number of dimensions of the tensor.
§Panics
If the tensor cannot be broadcasted to the given shape.
§Returns
A new tensor with the given shape.
source§impl<B, const D: usize> Tensor<B, D, Bool>where
B: Backend,
impl<B, const D: usize> Tensor<B, D, Bool>where
B: Backend,
sourcepub fn from_bool(data: TensorData, device: &B::Device) -> Self
pub fn from_bool(data: TensorData, device: &B::Device) -> Self
Create a boolean tensor from data on the given device.
sourcepub fn nonzero(self) -> Vec<Tensor<B, 1, Int>>
pub fn nonzero(self) -> Vec<Tensor<B, 1, Int>>
Compute the indices of the elements that are non-zero.
§Returns
A vector of tensors, one for each dimension of the given tensor, containing the indices of the non-zero elements in that dimension.
sourcepub async fn nonzero_async(self) -> Vec<Tensor<B, 1, Int>>
pub async fn nonzero_async(self) -> Vec<Tensor<B, 1, Int>>
Compute the indices of the elements that are non-zero.
§Returns
A vector of tensors, one for each dimension of the given tensor, containing the indices of the non-zero elements in that dimension.
sourcepub fn argwhere(self) -> Tensor<B, 2, Int>
pub fn argwhere(self) -> Tensor<B, 2, Int>
Compute the indices of the elements that are true, grouped by element.
§Returns
A tensor containing the indices of all non-zero elements of the given tensor. Each row in the result contains the indices of a non-zero element.
sourcepub async fn argwhere_async(self) -> Tensor<B, 2, Int>
pub async fn argwhere_async(self) -> Tensor<B, 2, Int>
Compute the indices of the elements that are true, grouped by element.
§Returns
A tensor containing the indices of all non-zero elements of the given tensor. Each row in the result contains the indices of a non-zero element.
sourcepub fn triu_mask<S: Into<Shape<D>>>(
shape: S,
offset: i64,
device: &B::Device,
) -> Self
pub fn triu_mask<S: Into<Shape<D>>>( shape: S, offset: i64, device: &B::Device, ) -> Self
Creates a mask for the upper triangle of a matrix, which can be used to fill the specified area with a value.
This function generates a boolean tensor representing the mask of the upper triangle of a matrix.
§Arguments
shape
: The shape of the matrix.offset
: The offset from the diagonal, where 0 means the diagonal, and positive values shift towards the upper triangle.device
: The device on which the tensor will be allocated.
§Returns
Returns a boolean tensor where true
indicates the elements of the matrix that are part of the
upper triangle taking into account the specified offset
.
sourcepub fn tril_mask<S: Into<Shape<D>>>(
shape: S,
offset: i64,
device: &B::Device,
) -> Self
pub fn tril_mask<S: Into<Shape<D>>>( shape: S, offset: i64, device: &B::Device, ) -> Self
Creates a mask for the lower triangle of a matrix, which can be used to fill the specified area with a value.
This function generates a boolean tensor representing the mask of the lower triangle of a matrix.
§Arguments
shape
: The shape of the matrix.offset
: The offset from the diagonal, where 0 means the diagonal, and negative values shift towards the lower triangle.device
: The device on which the tensor will be allocated.
§Returns
Returns a boolean tensor where true
indicates the elements of the matrix that are part of the
lower triangle taking into account the specified offset
.
sourcepub fn diag_mask<S: Into<Shape<D>>>(
shape: S,
offset: i64,
device: &B::Device,
) -> Self
pub fn diag_mask<S: Into<Shape<D>>>( shape: S, offset: i64, device: &B::Device, ) -> Self
Creates a mask for the diagonal of a matrix, which can be used to fill the specified area with a value.
This function generates a boolean tensor representing the mask of the diagonal of a matrix.
§Arguments
shape
: The shape of the matrix.device
: The device on which the tensor will be allocated.
§Returns
Returns a boolean tensor where true
indicates the elements of the matrix that are part of the
diagonal.
source§impl<const D: usize, B> Tensor<B, D>where
B: Backend,
impl<const D: usize, B> Tensor<B, D>where
B: Backend,
sourcepub fn inplace<F: FnOnce(Self) -> Self>(&mut self, func: F)
pub fn inplace<F: FnOnce(Self) -> Self>(&mut self, func: F)
Executes an operation on the tensor and modifies its value.
§Notes
This won’t necessary reuse the same tensor data/buffer, but it should if there is no other reference pointing to the same tensor.
Wrapping operations with inplace is not an optimization, it’s mainly there if you want to mutate a tensor by using owned operations. A plausible usage would be to update the weights of a mutable model reference.
sourcepub fn log1p(self) -> Self
pub fn log1p(self) -> Self
Applies the natural logarithm of one plus the input tensor, element-wise.
y = log(x+1)
sourcepub fn erf(self) -> Self
pub fn erf(self) -> Self
Applies the error function element wise.
y = erf(x)
sourcepub fn from_floats<A: Into<TensorData>>(floats: A, device: &B::Device) -> Self
pub fn from_floats<A: Into<TensorData>>(floats: A, device: &B::Device) -> Self
Create a tensor from floats (f32) on a given device.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::Tensor;
fn example<B: Backend>() {
let device = B::Device::default();
let _ = Tensor::<B, 1>::from_floats([1.0, 2.0], &device);
let _ = Tensor::<B, 2>::from_floats([[1.0, 2.0], [3.0, 4.0]], &device);
}
sourcepub fn int(self) -> Tensor<B, D, Int>
pub fn int(self) -> Tensor<B, D, Int>
Returns a new tensor with the same shape and device as the current tensor and the data casted to Integer.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::Tensor;
fn example<B: Backend>() {
let device = Default::default();
let float_tensor = Tensor::<B, 1>::from_floats([1.0, 2.0], &device);
let int_tensor = float_tensor.int();
}
sourcepub fn zeros_like(&self) -> Self
pub fn zeros_like(&self) -> Self
Returns a new tensor with the same shape and device as the current tensor filled with zeros.
sourcepub fn ones_like(&self) -> Self
pub fn ones_like(&self) -> Self
Returns a new tensor with the same shape and device as the current tensor filled with ones.
sourcepub fn random_like(&self, distribution: Distribution) -> Self
pub fn random_like(&self, distribution: Distribution) -> Self
Returns a new tensor with the same shape and device as the current tensor filled random values sampled from the given distribution.
sourcepub fn one_hot(index: usize, num_classes: usize, device: &B::Device) -> Self
pub fn one_hot(index: usize, num_classes: usize, device: &B::Device) -> Self
Create a one hot tensor.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::Tensor;
fn example<B: Backend>() {
let device = Default::default();
let one_hot = Tensor::<B, 1>::one_hot(2, 10, &device);
println!("{}", one_hot.to_data());
// [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
}
sourcepub fn matmul(self, other: Self) -> Self
pub fn matmul(self, other: Self) -> Self
Applies the matrix multiplication operation.
C = AB
§Panics
If the two tensors dont’ have a compatible shape.
sourcepub fn var_bias(self, dim: usize) -> Self
pub fn var_bias(self, dim: usize) -> Self
Calculate the variance along the given dimension without applying the Bessel’s correction.
sourcepub fn var_mean(self, dim: usize) -> (Self, Self)
pub fn var_mean(self, dim: usize) -> (Self, Self)
Calculate the variance along the given dimension and also returns the mean.
sourcepub fn var_mean_bias(self, dim: usize) -> (Self, Self)
pub fn var_mean_bias(self, dim: usize) -> (Self, Self)
Calculate the variance along the given dimension without applying the Bessel’s correction and also returns the mean.
sourcepub fn into_full_precision(self) -> Tensor<FullPrecisionBackend<B>, D>
pub fn into_full_precision(self) -> Tensor<FullPrecisionBackend<B>, D>
Returns a tensor with full precision based on the selected backend.
sourcepub fn from_full_precision(tensor: Tensor<FullPrecisionBackend<B>, D>) -> Self
pub fn from_full_precision(tensor: Tensor<FullPrecisionBackend<B>, D>) -> Self
Returns a tensor on the selected backend from a full precision tensor.
sourcepub fn detach(self) -> Self
pub fn detach(self) -> Self
Detach the current tensor from the autodiff graph.
This function does nothing when autodiff is not enabled. This can be used in batchers or elsewhere to ensure that previous operations are not considered in the autodiff graph.
sourcepub fn require_grad(self) -> Self
pub fn require_grad(self) -> Self
Mark the tensor to keep gradients during the backward pass.
This function does nothing when autodiff is not enabled.
sourcepub fn is_require_grad(&self) -> bool
pub fn is_require_grad(&self) -> bool
Returns true if the tensor requires gradients during the backward pass.
sourcepub fn set_require_grad(self, require_grad: bool) -> Self
pub fn set_require_grad(self, require_grad: bool) -> Self
Mark the tensor as tracked or untracked depending on the require grad argument. When tracked, the gradients will be available after the backward pass.
This function does nothing when autodiff is not enabled.
sourcepub fn cov(self, dim: usize, correction_factor: usize) -> Tensor<B, D>
pub fn cov(self, dim: usize, correction_factor: usize) -> Tensor<B, D>
Calculate covaraince matrix between different entries alongside a given dimension.
§Arguments
size
- The size of the square matrix.correction_factor
- Is usually 1 for samples and 0 for population.
sourcepub fn quantize(
self,
scheme: &QuantizationScheme,
qparams: QuantizationParameters<B>,
) -> Tensor<B, D>
pub fn quantize( self, scheme: &QuantizationScheme, qparams: QuantizationParameters<B>, ) -> Tensor<B, D>
sourcepub fn dequantize(self) -> Tensor<B, D>
pub fn dequantize(self) -> Tensor<B, D>
Convert the tensor back to a higher precision data type.
If the tensor is not quantized, its value is simply returned.
§Returns
The dequantized tensor.
source§impl<B> Tensor<B, 1, Int>where
B: Backend,
impl<B> Tensor<B, 1, Int>where
B: Backend,
source§impl<const D: usize, B> Tensor<B, D, Int>where
B: Backend,
impl<const D: usize, B> Tensor<B, D, Int>where
B: Backend,
sourcepub fn from_ints<A: Into<TensorData>>(ints: A, device: &B::Device) -> Self
pub fn from_ints<A: Into<TensorData>>(ints: A, device: &B::Device) -> Self
Create a tensor from integers (i32), placing it on a given device.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Int};
fn example<B: Backend>() {
let device = B::Device::default();
let _x: Tensor<B, 1, Int> = Tensor::from_ints([1, 2], &device);
let _y: Tensor<B, 2, Int> = Tensor::from_ints([[1, 2], [3, 4]], &device);
}
sourcepub fn float(self) -> Tensor<B, D, Float>
pub fn float(self) -> Tensor<B, D, Float>
Returns a new tensor with the same shape and device as the current tensor and the data casted to Float.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Int, Tensor};
fn example<B: Backend>() {
let device = Default::default();
let int_tensor = Tensor::<B, 1, Int>::arange(0..5, &device);
let float_tensor = int_tensor.float();
}
sourcepub fn cartesian_grid<S: Into<Shape<D>>, const D2: usize>(
shape: S,
device: &B::Device,
) -> Tensor<B, D2, Int>
pub fn cartesian_grid<S: Into<Shape<D>>, const D2: usize>( shape: S, device: &B::Device, ) -> Tensor<B, D2, Int>
Generates a cartesian grid for the given tensor shape on the specified device.
The generated tensor is of dimension D2 = D + 1
, where each element at dimension D contains the cartesian grid coordinates for that element.
§Arguments
shape
- The shape specifying the dimensions of the tensor.device
- The device to create the tensor on.
§Panics
Panics if D2
is not equal to D+1
.
§Examples
use burn_tensor::Int;
use burn_tensor::{backend::Backend, Shape, Tensor};
fn example<B: Backend>() {
let device = Default::default();
let result: Tensor<B, 3, _> = Tensor::<B, 2, Int>::cartesian_grid([2, 3], &device);
println!("{}", result);
}
source§impl<B, const D: usize, K> Tensor<B, D, K>
impl<B, const D: usize, K> Tensor<B, D, K>
sourcepub fn add_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn add_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise addition operation with a scalar.
y = x + s
sourcepub fn sub_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn sub_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise subtraction operation with a scalar.
y = x - s
sourcepub fn div_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn div_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise division operation with a scalar.
y = x / s
sourcepub fn remainder_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn remainder_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise the remainder operation with a scalar.
y = x2 % x1
sourcepub fn mul(self, other: Self) -> Self
pub fn mul(self, other: Self) -> Self
Applies element wise multiplication operation.
y = x2 * x1
sourcepub fn mul_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn mul_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise multiplication operation with a scalar.
y = x * s
sourcepub fn zeros<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
pub fn zeros<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
Create a tensor of the given shape where each element is zero.
sourcepub fn ones<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
pub fn ones<S: Into<Shape<D>>>(shape: S, device: &B::Device) -> Self
Create a tensor of the given shape where each element is one.
sourcepub fn full<S: Into<Shape<D>>, E: ElementConversion>(
shape: S,
fill_value: E,
device: &B::Device,
) -> Self
pub fn full<S: Into<Shape<D>>, E: ElementConversion>( shape: S, fill_value: E, device: &B::Device, ) -> Self
Create a tensor of the given shape where each element is equal to the provided value.
sourcepub fn mean(self) -> Tensor<B, 1, K>
pub fn mean(self) -> Tensor<B, 1, K>
Aggregate all elements in the tensor with the mean operation.
sourcepub fn sum(self) -> Tensor<B, 1, K>
pub fn sum(self) -> Tensor<B, 1, K>
Aggregate all elements in the tensor with the sum operation.
sourcepub fn mean_dim(self, dim: usize) -> Self
pub fn mean_dim(self, dim: usize) -> Self
Aggregate all elements along the given dimension or axis in the tensor with the mean operation.
sourcepub fn sum_dim(self, dim: usize) -> Self
pub fn sum_dim(self, dim: usize) -> Self
Aggregate all elements along the given dimension or axis in the tensor with the sum operation.
sourcepub fn prod(self) -> Tensor<B, 1, K>
pub fn prod(self) -> Tensor<B, 1, K>
Aggregate all elements along the given dimension or axis in the tensor with the product operation.
sourcepub fn prod_dim(self, dim: usize) -> Self
pub fn prod_dim(self, dim: usize) -> Self
Aggregate all elements along the given dimension or axis in the tensor with the product operation.
sourcepub fn equal_elem<E: Element>(self, other: E) -> Tensor<B, D, Bool>
pub fn equal_elem<E: Element>(self, other: E) -> Tensor<B, D, Bool>
Applies element wise equal comparison and returns a boolean tensor.
sourcepub fn not_equal_elem<E: Element>(self, other: E) -> Tensor<B, D, Bool>
pub fn not_equal_elem<E: Element>(self, other: E) -> Tensor<B, D, Bool>
Applies element wise non-equality comparison and returns a boolean tensor.
sourcepub fn greater(self, other: Self) -> Tensor<B, D, Bool>
pub fn greater(self, other: Self) -> Tensor<B, D, Bool>
Applies element wise greater comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn greater_equal(self, other: Self) -> Tensor<B, D, Bool>
pub fn greater_equal(self, other: Self) -> Tensor<B, D, Bool>
Applies element wise greater-equal comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn lower(self, other: Self) -> Tensor<B, D, Bool>
pub fn lower(self, other: Self) -> Tensor<B, D, Bool>
Applies element wise lower comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn lower_equal(self, other: Self) -> Tensor<B, D, Bool>
pub fn lower_equal(self, other: Self) -> Tensor<B, D, Bool>
Applies element wise lower-equal comparison and returns a boolean tensor.
§Panics
If the two tensors don’t have the same shape.
sourcepub fn greater_elem<E: ElementConversion>(self, other: E) -> Tensor<B, D, Bool>
pub fn greater_elem<E: ElementConversion>(self, other: E) -> Tensor<B, D, Bool>
Applies element wise greater comparison and returns a boolean tensor.
sourcepub fn greater_equal_elem<E: ElementConversion>(
self,
other: E,
) -> Tensor<B, D, Bool>
pub fn greater_equal_elem<E: ElementConversion>( self, other: E, ) -> Tensor<B, D, Bool>
Applies element wise greater-equal comparison and returns a boolean tensor.
sourcepub fn lower_elem<E: ElementConversion>(self, other: E) -> Tensor<B, D, Bool>
pub fn lower_elem<E: ElementConversion>(self, other: E) -> Tensor<B, D, Bool>
Applies element wise lower comparison and returns a boolean tensor.
sourcepub fn lower_equal_elem<E: ElementConversion>(
self,
other: E,
) -> Tensor<B, D, Bool>
pub fn lower_equal_elem<E: ElementConversion>( self, other: E, ) -> Tensor<B, D, Bool>
Applies element wise lower-equal comparison and returns a boolean tensor.
sourcepub fn mask_where(self, mask: Tensor<B, D, Bool>, value: Self) -> Self
pub fn mask_where(self, mask: Tensor<B, D, Bool>, value: Self) -> Self
Update the given tensor with the value tensor where the mask is true.
This is similar to mask_fill, however the value is a tensor instead of a scalar.
sourcepub fn mask_fill<E: ElementConversion>(
self,
mask: Tensor<B, D, Bool>,
value: E,
) -> Self
pub fn mask_fill<E: ElementConversion>( self, mask: Tensor<B, D, Bool>, value: E, ) -> Self
Update the given tensor with the value where the mask is true.
This is similar to mask_where, however the value is a scalar instead of a tensor.
sourcepub fn gather(self, dim: usize, indices: Tensor<B, D, Int>) -> Self
pub fn gather(self, dim: usize, indices: Tensor<B, D, Int>) -> Self
Gather tensor elements corresponding to the given indices from the specified dim.
Example using a 3D tensor:
output[i, j, k] = input[indices[i, j, k], j, k]; // dim = 0
output[i, j, k] = input[i, indices[i, j, k], k]; // dim = 1
output[i, j, k] = input[i, j, indices[i, j, k]]; // dim = 2
§Notes
The index tensor should have the same shape as the original tensor except for the dim specified.
sourcepub fn scatter(
self,
dim: usize,
indices: Tensor<B, D, Int>,
values: Self,
) -> Self
pub fn scatter( self, dim: usize, indices: Tensor<B, D, Int>, values: Self, ) -> Self
Assign the gathered elements corresponding to the given indices along the specified dimension from the value tensor to the original tensor using sum reduction.
Example using a 3D tensor:
input[indices[i, j, k], j, k] += values[i, j, k]; // dim = 0
input[i, indices[i, j, k], k] += values[i, j, k]; // dim = 1
input[i, j, indices[i, j, k]] += values[i, j, k]; // dim = 2
§Notes
The index tensor should have the same shape as the original tensor except for the specified dimension. The value and index tensors should have the same shape.
Other references to the input tensor will not be modified by this operation.
sourcepub fn select(self, dim: usize, indices: Tensor<B, 1, Int>) -> Self
pub fn select(self, dim: usize, indices: Tensor<B, 1, Int>) -> Self
Select the tensor elements along the given dimension corresponding to the given indices.
Example using a 3D tensor:
output[i, j, k] = input[indices[i], j, k]; // dim = 0
output[i, j, k] = input[i, indices[j], k]; // dim = 1
output[i, j, k] = input[i, j, indices[k]]; // dim = 2
sourcepub fn select_assign(
self,
dim: usize,
indices: Tensor<B, 1, Int>,
values: Tensor<B, D, K>,
) -> Self
pub fn select_assign( self, dim: usize, indices: Tensor<B, 1, Int>, values: Tensor<B, D, K>, ) -> Self
Assign the selected elements along the given dimension corresponding to the given indices from the value tensor to the original tensor using sum reduction.
Example using a 3D tensor:
input[indices[i], j, k] += values[i, j, k]; // dim = 0
input[i, indices[j], k] += values[i, j, k]; // dim = 1
input[i, j, indices[k]] += values[i, j, k]; // dim = 2
sourcepub fn argmax(self, dim: usize) -> Tensor<B, D, Int>
pub fn argmax(self, dim: usize) -> Tensor<B, D, Int>
Applies the argmax function along the given dimension and returns an integer tensor.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = B::Device::default();
let tensor = Tensor::<B, 3>::ones(Shape::new([2, 3, 3]), &device);
let tensor = tensor.argmax(1);
println!("{:?}", tensor.shape());
// Shape { dims: [2, 1, 3] }
}
sourcepub fn max_dim(self, dim: usize) -> Tensor<B, D, K>
pub fn max_dim(self, dim: usize) -> Tensor<B, D, K>
Find the maximum value along the given dimension.
sourcepub fn max_dim_with_indices(
self,
dim: usize,
) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
pub fn max_dim_with_indices( self, dim: usize, ) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
Find the maximum value along the given dimension.
Also returns the indices.
sourcepub fn argmin(self, dim: usize) -> Tensor<B, D, Int>
pub fn argmin(self, dim: usize) -> Tensor<B, D, Int>
Applies the argmin function along the given dimension and returns an integer tensor.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Tensor, Shape};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 3>::ones(Shape::new([2, 3, 3]), &device);
let tensor = tensor.argmin(1);
println!("{:?}", tensor.shape());
// Shape { dims: [2, 1, 3] }
}
sourcepub fn min_dim(self, dim: usize) -> Tensor<B, D, K>
pub fn min_dim(self, dim: usize) -> Tensor<B, D, K>
Find the minimum value along the given dimension.
sourcepub fn min_dim_with_indices(
self,
dim: usize,
) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
pub fn min_dim_with_indices( self, dim: usize, ) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
Find the minimum value along the given dimension.
Also returns the indices.
sourcepub fn clamp<E: ElementConversion>(self, min: E, max: E) -> Self
pub fn clamp<E: ElementConversion>(self, min: E, max: E) -> Self
sourcepub fn clamp_min<E: ElementConversion>(self, min: E) -> Self
pub fn clamp_min<E: ElementConversion>(self, min: E) -> Self
sourcepub fn clamp_max<E: ElementConversion>(self, max: E) -> Self
pub fn clamp_max<E: ElementConversion>(self, max: E) -> Self
sourcepub fn triu(self, diagonal: i64) -> Self
pub fn triu(self, diagonal: i64) -> Self
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Int, Tensor};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 2, Int>::from_ints(
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
],
&device
);
let tensor = tensor.triu(1);
println!("{}", tensor);
// Tensor { data: [
// [0, 2, 3],
// [0, 0, 6],
// [0, 0, 0]
// ], ... }
}
sourcepub fn tril(self, diagonal: i64) -> Self
pub fn tril(self, diagonal: i64) -> Self
Returns the lower triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
§Example
use burn_tensor::backend::Backend;
use burn_tensor::{Int, Tensor};
fn example<B: Backend>() {
let device = Default::default();
let tensor = Tensor::<B, 2, Int>::from_ints(
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
],
&device
);
let tensor = tensor.tril(-1);
println!("{}", tensor);
// Tensor { data: [
// [0, 0, 0],
// [4, 0, 0],
// [7, 8, 0]
// ], ... }
}
sourcepub fn powf(self, other: Self) -> Self
pub fn powf(self, other: Self) -> Self
Applies element wise power operation with a float Tensor
sourcepub fn powf_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn powf_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise power operation with a float scalar
sourcepub fn powi(self, other: Self) -> Self
pub fn powi(self, other: Self) -> Self
Applies element wise power operation with a integer Tensor
sourcepub fn powi_scalar<E: ElementConversion>(self, other: E) -> Self
pub fn powi_scalar<E: ElementConversion>(self, other: E) -> Self
Applies element wise power operation with a integer scalar
sourcepub fn is_close(
self,
other: Self,
rtol: Option<f64>,
atol: Option<f64>,
) -> Tensor<B, D, Bool>
pub fn is_close( self, other: Self, rtol: Option<f64>, atol: Option<f64>, ) -> Tensor<B, D, Bool>
Checks element wise if the tensor is close to another tensor.
The tolerance is defined by the following equation:
abs(a - b) <= (atol + rtol * abs(b))
where `a` is the first tensor, `b` is the second tensor, `rtol` is the relative tolerance,
and `atol` is the absolute tolerance.
§Arguments
other
- The tensor to compare with.rtol
- Optional relative tolerance. Default is 1e-5.atol
- Optional absolute tolerance. Default is 1e-8.
§Returns
A boolean tensor with the same shape as the input tensors.
sourcepub fn all_close(
self,
other: Self,
rtol: Option<f64>,
atol: Option<f64>,
) -> bool
pub fn all_close( self, other: Self, rtol: Option<f64>, atol: Option<f64>, ) -> bool
Checks if all elements are close to another tensor.
The tolerance is defined by the following equation:
abs(a - b) <= (atol + rtol * abs(b))
where `a` is the first tensor, `b` is the second tensor, `rtol` is the relative tolerance,
and `atol` is the absolute tolerance.
§Arguments
other
- The tensor to compare with.rtol
- Optional relative tolerance. Default is 1e-5.atol
- Optional absolute tolerance. Default is 1e-8.
§Returns
A boolean scalar.
§Remarks
sourcepub fn bool(self) -> Tensor<B, D, Bool>
pub fn bool(self) -> Tensor<B, D, Bool>
Converts the tensor to a boolean tensor by checking if the elements are non-zero.
§Returns
A boolean tensor with the same shape as the input tensor.
sourcepub fn random<S: Into<Shape<D>>>(
shape: S,
distribution: Distribution,
device: &B::Device,
) -> Self
pub fn random<S: Into<Shape<D>>>( shape: S, distribution: Distribution, device: &B::Device, ) -> Self
Create a random tensor of the given shape on the given device where each element is sampled from the given distribution.
sourcepub fn sort(self, dim: usize) -> Tensor<B, D, K>
pub fn sort(self, dim: usize) -> Tensor<B, D, K>
Sort the elements by value in ascending order along a given dimension.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn sort_descending(self, dim: usize) -> Tensor<B, D, K>
pub fn sort_descending(self, dim: usize) -> Tensor<B, D, K>
Sort the elements by value in descending order along a given dimension.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn sort_with_indices(
self,
dim: usize,
) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
pub fn sort_with_indices( self, dim: usize, ) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
Sort the elements by value in ascending order along a given dimension. Also returns the indices.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn sort_descending_with_indices(
self,
dim: usize,
) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
pub fn sort_descending_with_indices( self, dim: usize, ) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
Sort the elements by value in descending order along a given dimension. Also returns the indices.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn argsort(self, dim: usize) -> Tensor<B, D, Int>
pub fn argsort(self, dim: usize) -> Tensor<B, D, Int>
Returns the indices that sort the elements by value in ascending order along a given dimension.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn argsort_descending(self, dim: usize) -> Tensor<B, D, Int>
pub fn argsort_descending(self, dim: usize) -> Tensor<B, D, Int>
Returns the indices that sort the elements by value in descending order along a given dimension.
This sort is unstable (i.e., may reorder equal elements).
sourcepub fn topk(self, k: usize, dim: usize) -> Tensor<B, D, K>
pub fn topk(self, k: usize, dim: usize) -> Tensor<B, D, K>
Returns the k
largest elements of the given input tensor along a given dimension.
sourcepub fn topk_with_indices(
self,
k: usize,
dim: usize,
) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
pub fn topk_with_indices( self, k: usize, dim: usize, ) -> (Tensor<B, D, K>, Tensor<B, D, Int>)
Returns the k
largest elements of the given input tensor along a given dimension.
Also returns the indices.
sourcepub fn is_nan(&self) -> Tensor<B, D, Bool>
pub fn is_nan(&self) -> Tensor<B, D, Bool>
Returns a new tensor with boolean elements indicating whether each element of the input is NaN.
§Returns
A boolean tensor where true
indicates NaN and false
indicates a non-NaN value.
sourcepub fn contains_nan(&self) -> Tensor<B, 1, Bool>
pub fn contains_nan(&self) -> Tensor<B, 1, Bool>
Checks if the tensor contains any NaN values.
§Returns
A boolean tensor with a single element indicating whether the tensor contains any NaN values.
Trait Implementations§
source§impl<'de, B, const D: usize, K> Deserialize<'de> for Tensor<B, D, K>
impl<'de, B, const D: usize, K> Deserialize<'de> for Tensor<B, D, K>
source§fn deserialize<De: Deserializer<'de>>(
deserializer: De,
) -> Result<Self, De::Error>
fn deserialize<De: Deserializer<'de>>( deserializer: De, ) -> Result<Self, De::Error>
Auto Trait Implementations§
impl<B, const D: usize, K> Freeze for Tensor<B, D, K>
impl<B, const D: usize, K> RefUnwindSafe for Tensor<B, D, K>
impl<B, const D: usize, K> Send for Tensor<B, D, K>
impl<B, const D: usize, K> Sync for Tensor<B, D, K>
impl<B, const D: usize, K> Unpin for Tensor<B, D, K>
impl<B, const D: usize, K> UnwindSafe for Tensor<B, D, K>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)