1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
use super::{conv, pool, unfold::unfold4d_using_conv2d};
use crate::{
backend::Backend,
ops::{FloatTensor, IntTensor},
Shape,
};
/// Gradient computed during the backward pass for each tensor used by [conv2d](ModuleOps::conv2d).
#[derive(new)]
pub struct Conv2dBackward<B: Backend> {
/// Gradient.
pub x_grad: FloatTensor<B, 4>,
/// Weights gradient.
pub weights_grad: FloatTensor<B, 4>,
/// Bias gradient.
pub bias_grad: Option<FloatTensor<B, 1>>,
}
/// Gradient computed during the backward pass for each tensor used by [max_pool1d](ModuleOps::max_pool1d).
#[derive(new)]
pub struct MaxPool1dBackward<B: Backend> {
/// Gradient.
pub x_grad: FloatTensor<B, 3>,
}
/// Results from [max_pool1d](ModuleOps::max_pool1d_with_indices).
#[derive(new)]
pub struct MaxPool1dWithIndices<B: Backend> {
/// The output tensor.
pub output: FloatTensor<B, 3>,
/// The indices tensor.
pub indices: IntTensor<B, 3>,
}
/// Gradient computed during the backward pass for each tensor used by [max_pool2d](ModuleOps::max_pool2d).
#[derive(new)]
pub struct MaxPool2dBackward<B: Backend> {
/// Gradient.
pub x_grad: FloatTensor<B, 4>,
}
/// Results from [max_pool2d](ModuleOps::max_pool2d_with_indices).
#[derive(new)]
pub struct MaxPool2dWithIndices<B: Backend> {
/// The output tensor.
pub output: FloatTensor<B, 4>,
/// The indices tensor.
pub indices: IntTensor<B, 4>,
}
/// Gradient computed during the backward pass for each tensor used by [conv1d](ModuleOps::conv1d).
#[derive(new)]
pub struct Conv1dBackward<B: Backend> {
/// Gradient.
pub x_grad: FloatTensor<B, 3>,
/// Weights gradient.
pub weights_grad: FloatTensor<B, 3>,
/// Bias gradient.
pub bias_grad: Option<FloatTensor<B, 1>>,
}
/// Convolution options.
#[derive(new, Debug, Clone, Hash, PartialEq, Eq)]
pub struct ConvOptions<const N: usize> {
/// Stride.
pub stride: [usize; N],
/// Padding.
pub padding: [usize; N],
/// Dilation.
pub dilation: [usize; N],
/// Groups.
pub groups: usize,
}
/// Transposed convolution options.
#[derive(new, Debug, Clone, Hash, PartialEq, Eq)]
pub struct ConvTransposeOptions<const N: usize> {
/// Stride.
pub stride: [usize; N],
/// Padding.
pub padding: [usize; N],
/// Padding out.
pub padding_out: [usize; N],
/// Dilation.
pub dilation: [usize; N],
/// Groups.
pub groups: usize,
}
/// Unfold operation options.
#[derive(new, Debug, Clone)]
pub struct UnfoldOptions {
/// The number of positions to slide over the input tensor in each dimension.
/// A stride of `[1, 1]` will slide the kernel one pixel at a time.
pub stride: [usize; 2],
/// The number of zero-padding pixels added to each side of the input tensor in each dimension.
pub padding: [usize; 2],
/// The spacing between the blocks (patches) in the original input tensor.
pub dilation: [usize; 2],
}
/// Algorithm used for upsampling.
#[derive(new, Debug, Clone)]
pub enum InterpolateMode {
/// Nearest-neighbor interpolation.
/// <https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation>
Nearest,
/// Bilinear interpolation.
/// <https://en.wikipedia.org/wiki/Bilinear_interpolation>
Bilinear,
/// Bicubic interpolation.
/// <https://en.wikipedia.org/wiki/Bicubic_interpolation>
Bicubic,
}
/// Interpolation options.
#[derive(new, Debug, Clone)]
pub struct InterpolateOptions {
/// Algorithm used for upsampling.
pub mode: InterpolateMode,
}
/// Gradient computed during the backward pass for each tensor used by [interpolate](ModuleOps::interpolate).
#[derive(new)]
pub struct InterpolateBackward<B: Backend> {
/// Gradient.
pub x_grad: FloatTensor<B, 4>,
}
/// Module operations trait.
pub trait ModuleOps<B: Backend> {
/// Embedding operation.
///
/// # Arguments
///
/// * `weights` - The embedding weights.
/// * `indices` - The indices tensor.
///
/// # Returns
///
/// The output tensor.
fn embedding(weights: FloatTensor<B, 2>, indices: IntTensor<B, 2>) -> FloatTensor<B, 3> {
let [batch_size, seq_length] = B::int_shape(&indices).dims;
let [_, d_model] = B::float_shape(&weights).dims;
let indices = B::int_reshape(indices, Shape::new([batch_size * seq_length]));
let output = B::float_select(weights, 0, indices);
B::float_reshape(output, Shape::new([batch_size, seq_length, d_model]))
}
/// Embedding backward operation.
///
/// # Arguments
///
/// * `weights` - The embedding weights.
/// * `output_grad` - The output gradient.
/// * `indices` - The indices tensor.
///
/// # Returns
///
/// The gradient.
fn embedding_backward(
weights: FloatTensor<B, 2>,
output_grad: FloatTensor<B, 3>,
indices: IntTensor<B, 2>,
) -> FloatTensor<B, 2> {
let [batch_size, seq_length] = B::int_shape(&indices).dims;
let [n_embeddings, d_model] = B::float_shape(&weights).dims;
let device = B::float_device(&weights);
let indices = B::int_reshape(indices, Shape::new([batch_size * seq_length]));
let output_grad =
B::float_reshape(output_grad, Shape::new([batch_size * seq_length, d_model]));
let grad = B::float_zeros(Shape::new([n_embeddings, d_model]), &device);
B::float_select_assign(grad, 0, indices, output_grad)
}
/// One dimensional convolution.
///
/// # Shapes
///
/// x: `[batch_size, channels_in, length]`,
/// weight: `[channels_out, channels_in, kernel_size]`,
/// bias: `[channels_out]`,
fn conv1d(
x: FloatTensor<B, 3>,
weight: FloatTensor<B, 3>,
bias: Option<FloatTensor<B, 1>>,
options: ConvOptions<1>,
) -> FloatTensor<B, 3> {
conv::conv1d_from_conv2d::<B>(x, weight, bias, options)
}
/// Backward pass for the [conv1d](ModuleOps::conv1d) operation.
fn conv1d_backward(
x: FloatTensor<B, 3>,
weight: FloatTensor<B, 3>,
bias: Option<FloatTensor<B, 1>>,
output_grad: FloatTensor<B, 3>,
options: ConvOptions<1>,
) -> Conv1dBackward<B> {
conv::conv1d_backward(x, weight, bias, output_grad, options)
}
/// Two dimensional convolution.
///
/// # Shapes
///
/// x: `[batch_size, channels_in, height, width]`,
/// weight: `[channels_out, channels_in, kernel_size_1, kernel_size_2]`,
/// bias: `[channels_out]`,
fn conv2d(
x: FloatTensor<B, 4>,
weight: FloatTensor<B, 4>,
bias: Option<FloatTensor<B, 1>>,
options: ConvOptions<2>,
) -> FloatTensor<B, 4>;
/// Backward pass for the [conv2d](ModuleOps::conv2d) operation.
fn conv2d_backward(
x: FloatTensor<B, 4>,
weight: FloatTensor<B, 4>,
bias: Option<FloatTensor<B, 1>>,
output_grad: FloatTensor<B, 4>,
options: ConvOptions<2>,
) -> Conv2dBackward<B> {
conv::conv2d_backward(x, weight, bias, output_grad, options)
}
/// One dimensional transposed convolution.
///
/// # Shapes
///
/// x: `[batch_size, channels_in, length]`,
/// weight: `[channels_in, channels_out, length]`,
/// bias: `[channels_out]`,
fn conv_transpose1d(
x: FloatTensor<B, 3>,
weight: FloatTensor<B, 3>,
bias: Option<FloatTensor<B, 1>>,
options: ConvTransposeOptions<1>,
) -> FloatTensor<B, 3> {
conv::conv_transpose1d_from_conv_transpose2d::<B>(x, weight, bias, options)
}
/// Backward pass for the [conv transpose 1d](ModuleOps::conv_transpose1d) operation.
fn conv_transpose1d_backward(
x: FloatTensor<B, 3>,
weight: FloatTensor<B, 3>,
bias: Option<FloatTensor<B, 1>>,
output_grad: FloatTensor<B, 3>,
options: ConvTransposeOptions<1>,
) -> Conv1dBackward<B> {
conv::conv_transpose1d_backward(x, weight, bias, output_grad, options)
}
/// Two dimensional transposed convolution.
///
/// # Shapes
///
/// x: `[batch_size, channels_in, height, width]`,
/// weight: `[channels_in, channels_out, kernel_size_1, kernel_size_2]`,
/// bias: `[channels_out]`,
fn conv_transpose2d(
x: FloatTensor<B, 4>,
weight: FloatTensor<B, 4>,
bias: Option<FloatTensor<B, 1>>,
options: ConvTransposeOptions<2>,
) -> FloatTensor<B, 4>;
/// Backward pass for the [conv transpose 2d](ModuleOps::conv_transpose2d) operation.
fn conv_transpose2d_backward(
x: FloatTensor<B, 4>,
weight: FloatTensor<B, 4>,
bias: Option<FloatTensor<B, 1>>,
output_grad: FloatTensor<B, 4>,
options: ConvTransposeOptions<2>,
) -> Conv2dBackward<B> {
conv::conv_transpose2d_backward(x, weight, bias, output_grad, options)
}
/// Four-dimensional unfolding.
///
/// # Shapes
///
/// x: `[batch_size, channels_in, height, width]`,
/// returns: `[batch_size, channels_in * kernel_size_1 * kernel_size_2, number of blocks]`,
fn unfold4d(
x: FloatTensor<B, 4>,
kernel_size: [usize; 2],
options: UnfoldOptions,
) -> FloatTensor<B, 3> {
unfold4d_using_conv2d::<B>(x, kernel_size, options)
}
/// One dimensional avg pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, length],
fn avg_pool1d(
x: FloatTensor<B, 3>,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool,
) -> FloatTensor<B, 3> {
pool::avg_pool1d_from_2d::<B>(x, kernel_size, stride, padding, count_include_pad)
}
/// Backward pass for the [avg pooling 1d](ModuleOps::avg_pool1d) operation.
fn avg_pool1d_backward(
x: FloatTensor<B, 3>,
grad: FloatTensor<B, 3>,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool,
) -> FloatTensor<B, 3> {
pool::avg_pool1d_backward_from_2d::<B>(
x,
grad,
kernel_size,
stride,
padding,
count_include_pad,
)
}
/// Two dimensional avg pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, height, width],
fn avg_pool2d(
x: FloatTensor<B, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> FloatTensor<B, 4>;
/// Backward pass for the [avg pooling 2d](ModuleOps::avg_pool2d) operation.
fn avg_pool2d_backward(
x: FloatTensor<B, 4>,
grad: FloatTensor<B, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> FloatTensor<B, 4>;
/// Two dimensional adaptive avg pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, height, width],
fn adaptive_avg_pool2d(x: FloatTensor<B, 4>, output_size: [usize; 2]) -> FloatTensor<B, 4>;
/// Backward pass for the [adaptive avg pooling 2d](ModuleOps::adaptive_avg_pool2d) operation.
fn adaptive_avg_pool2d_backward(
x: FloatTensor<B, 4>,
grad: FloatTensor<B, 4>,
) -> FloatTensor<B, 4>;
/// One dimensional adaptive avg pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, length],
fn adaptive_avg_pool1d(x: FloatTensor<B, 3>, output_size: usize) -> FloatTensor<B, 3> {
pool::adaptive_avg_pool1d_from_2d::<B>(x, output_size)
}
/// Backward pass for the [adaptive avg pooling 1d](ModuleOps::adaptive_avg_pool1d) operation.
fn adaptive_avg_pool1d_backward(
x: FloatTensor<B, 3>,
grad: FloatTensor<B, 3>,
) -> FloatTensor<B, 3> {
pool::adaptive_avg_pool1d_backward_from_2d::<B>(x, grad)
}
/// One dimensional max pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, length],
fn max_pool1d(
x: FloatTensor<B, 3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
) -> FloatTensor<B, 3> {
pool::max_pool1d_from_2d::<B>(x, kernel_size, stride, padding, dilation)
}
/// One dimensional max pooling with indices.
///
/// # Shapes
///
/// x: [batch_size, channels, height, width],
fn max_pool1d_with_indices(
x: FloatTensor<B, 3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
) -> MaxPool1dWithIndices<B> {
pool::max_pool1d_with_indices_from_2d::<B>(x, kernel_size, stride, padding, dilation)
}
/// Backward pass for the [max pooling 1d](ModuleOps::max_pool1d_with_indices) operation.
fn max_pool1d_with_indices_backward(
x: FloatTensor<B, 3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
output_grad: FloatTensor<B, 3>,
indices: IntTensor<B, 3>,
) -> MaxPool1dBackward<B> {
pool::max_pool1d_with_indices_backward_from_2d::<B>(
x,
kernel_size,
stride,
padding,
dilation,
output_grad,
indices,
)
}
/// Two dimensional max pooling.
///
/// # Shapes
///
/// x: [batch_size, channels, height, width],
fn max_pool2d(
x: FloatTensor<B, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> FloatTensor<B, 4>;
/// Two dimensional max pooling with indices.
///
/// # Shapes
///
/// x: [batch_size, channels, height, width],
fn max_pool2d_with_indices(
x: FloatTensor<B, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> MaxPool2dWithIndices<B>;
/// Backward pass for the [max pooling 2d](ModuleOps::max_pool2d_with_indices) operation.
fn max_pool2d_with_indices_backward(
x: FloatTensor<B, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
output_grad: FloatTensor<B, 4>,
indices: IntTensor<B, 4>,
) -> MaxPool2dBackward<B>;
/// Down/up samples the input.
///
/// # Shapes
///
/// x: `[batch_size, channels, height, width]`,
fn interpolate(
x: FloatTensor<B, 4>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> FloatTensor<B, 4>;
/// Backward pass for the [interpolate](ModuleOps::interpolate) operation.
fn interpolate_backward(
x: FloatTensor<B, 4>,
grad: FloatTensor<B, 4>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> FloatTensor<B, 4>;
}