use alloc::format;
use alloc::string::String;
use alloc::vec::Vec;
use crate::{tensor::Shape, Element, ElementConversion};
use num_traits::pow::Pow;
#[cfg(not(feature = "std"))]
#[allow(unused_imports)]
use num_traits::Float;
use rand::{distributions::Standard, Rng, RngCore};
#[derive(serde::Serialize, serde::Deserialize, Debug, PartialEq, Eq, Clone, new)]
pub struct DataSerialize<E> {
pub value: Vec<E>,
pub shape: Vec<usize>,
}
#[derive(new, Debug, Clone, PartialEq, Eq)]
pub struct Data<E, const D: usize> {
pub value: Vec<E>,
pub shape: Shape<D>,
}
#[derive(Debug, Clone, Copy, PartialEq, serde::Serialize, serde::Deserialize)]
pub enum Distribution {
Default,
Bernoulli(f64),
Uniform(f64, f64),
Normal(f64, f64),
}
#[derive(new)]
pub struct DistributionSampler<'a, E, R>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
R: RngCore,
{
kind: DistributionSamplerKind<E>,
rng: &'a mut R,
}
pub enum DistributionSamplerKind<E>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
{
Standard(rand::distributions::Standard),
Uniform(rand::distributions::Uniform<E>),
Bernoulli(rand::distributions::Bernoulli),
Normal(rand_distr::Normal<f64>),
}
impl<'a, E, R> DistributionSampler<'a, E, R>
where
Standard: rand::distributions::Distribution<E>,
E: rand::distributions::uniform::SampleUniform,
E: Element,
R: RngCore,
{
pub fn sample(&mut self) -> E {
match &self.kind {
DistributionSamplerKind::Standard(distribution) => self.rng.sample(distribution),
DistributionSamplerKind::Uniform(distribution) => self.rng.sample(distribution),
DistributionSamplerKind::Bernoulli(distribution) => {
if self.rng.sample(distribution) {
1.elem()
} else {
0.elem()
}
}
DistributionSamplerKind::Normal(distribution) => self.rng.sample(distribution).elem(),
}
}
}
impl Distribution {
pub fn sampler<R: RngCore, E: Element>(self, rng: &'_ mut R) -> DistributionSampler<'_, E, R>
where
E: rand::distributions::uniform::SampleUniform,
Standard: rand::distributions::Distribution<E>,
{
let kind = match self {
Distribution::Default => {
DistributionSamplerKind::Standard(rand::distributions::Standard {})
}
Distribution::Uniform(low, high) => DistributionSamplerKind::Uniform(
rand::distributions::Uniform::new(low.elem::<E>(), high.elem::<E>()),
),
Distribution::Bernoulli(prob) => DistributionSamplerKind::Bernoulli(
rand::distributions::Bernoulli::new(prob).unwrap(),
),
Distribution::Normal(mean, std) => {
DistributionSamplerKind::Normal(rand_distr::Normal::new(mean, std).unwrap())
}
};
DistributionSampler::new(kind, rng)
}
}
impl<const D: usize, E: Element> Data<E, D> {
pub fn convert<EOther: Element>(self) -> Data<EOther, D> {
let value: Vec<EOther> = self.value.into_iter().map(|a| a.elem()).collect();
Data {
value,
shape: self.shape,
}
}
pub fn assert_within_range<EOther: Element>(&self, range: core::ops::Range<EOther>) {
let start = range.start.elem::<f32>();
let end = range.end.elem::<f32>();
for elem in self.value.iter() {
let elem = elem.elem::<f32>();
if elem < start || elem >= end {
panic!("Element ({elem:?}) is not within range {range:?}");
}
}
}
}
impl<E: Element> DataSerialize<E> {
pub fn convert<EOther: Element>(self) -> DataSerialize<EOther> {
let value: Vec<EOther> = self.value.into_iter().map(|a| a.elem()).collect();
DataSerialize {
value,
shape: self.shape,
}
}
}
impl<const D: usize> Data<bool, D> {
pub fn convert<E: Element>(self) -> Data<E, D> {
let value: Vec<E> = self.value.into_iter().map(|a| (a as i64).elem()).collect();
Data {
value,
shape: self.shape,
}
}
}
impl<E: Element, const D: usize> Data<E, D> {
pub fn random<R: RngCore>(shape: Shape<D>, distribution: Distribution, rng: &mut R) -> Self {
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(E::random(distribution, rng));
}
Data::new(data, shape)
}
}
impl<E: core::fmt::Debug, const D: usize> Data<E, D>
where
E: Element,
{
pub fn zeros<S: Into<Shape<D>>>(shape: S) -> Data<E, D> {
let shape = shape.into();
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(0.elem());
}
Data::new(data, shape)
}
}
impl<E: core::fmt::Debug, const D: usize> Data<E, D>
where
E: Element,
{
pub fn ones(shape: Shape<D>) -> Data<E, D> {
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(1.elem());
}
Data::new(data, shape)
}
}
impl<E: core::fmt::Debug, const D: usize> Data<E, D>
where
E: Element,
{
pub fn full(shape: Shape<D>, fill_value: E) -> Data<E, D> {
let num_elements = shape.num_elements();
let mut data = Vec::with_capacity(num_elements);
for _ in 0..num_elements {
data.push(fill_value)
}
Data::new(data, shape)
}
}
impl<E: core::fmt::Debug + Copy, const D: usize> Data<E, D> {
pub fn serialize(&self) -> DataSerialize<E> {
DataSerialize {
value: self.value.clone(),
shape: self.shape.dims.to_vec(),
}
}
}
impl<E: Into<f64> + Clone + core::fmt::Debug + PartialEq, const D: usize> Data<E, D> {
#[track_caller]
pub fn assert_approx_eq(&self, other: &Self, precision: usize) {
let tolerance = 0.1.pow(precision as f64);
self.assert_approx_eq_diff(other, tolerance)
}
#[track_caller]
pub fn assert_approx_eq_diff(&self, other: &Self, tolerance: f64) {
let mut message = String::new();
if self.shape != other.shape {
message += format!(
"\n => Shape is different: {:?} != {:?}",
self.shape.dims, other.shape.dims
)
.as_str();
}
let iter = self.value.clone().into_iter().zip(other.value.clone());
let mut num_diff = 0;
let max_num_diff = 5;
for (i, (a, b)) in iter.enumerate() {
let a: f64 = a.into();
let b: f64 = b.into();
let both_nan = a.is_nan() && b.is_nan();
let both_inf = a.is_infinite() && b.is_infinite() && ((a > 0.) == (b > 0.));
if both_nan || both_inf {
continue;
}
let err = ((a - b).pow(2.0f64)).sqrt();
if err > tolerance || err.is_nan() {
if num_diff < max_num_diff {
message += format!(
"\n => Position {i}: {a} != {b} | difference {err} > tolerance \
{tolerance}"
)
.as_str();
}
num_diff += 1;
}
}
if num_diff >= max_num_diff {
message += format!("\n{} more errors...", num_diff - 5).as_str();
}
if !message.is_empty() {
panic!("Tensors are not approx eq:{}", message);
}
}
}
impl<const D: usize> Data<usize, D> {
pub fn from_usize<O: num_traits::FromPrimitive>(self) -> Data<O, D> {
let value: Vec<O> = self
.value
.into_iter()
.map(|a| num_traits::FromPrimitive::from_usize(a).unwrap())
.collect();
Data {
value,
shape: self.shape,
}
}
}
impl<E: Clone, const D: usize> From<&DataSerialize<E>> for Data<E, D> {
fn from(data: &DataSerialize<E>) -> Self {
let mut dims = [0; D];
dims[..D].copy_from_slice(&data.shape[..D]);
Data::new(data.value.clone(), Shape::new(dims))
}
}
impl<E, const D: usize> From<DataSerialize<E>> for Data<E, D> {
fn from(data: DataSerialize<E>) -> Self {
let mut dims = [0; D];
dims[..D].copy_from_slice(&data.shape[..D]);
Data::new(data.value, Shape::new(dims))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize> From<[E; A]> for Data<E, 1> {
fn from(elems: [E; A]) -> Self {
let mut data = Vec::with_capacity(2 * A);
for elem in elems.into_iter() {
data.push(elem);
}
Data::new(data, Shape::new([A]))
}
}
impl<E: core::fmt::Debug + Copy> From<&[E]> for Data<E, 1> {
fn from(elems: &[E]) -> Self {
let mut data = Vec::with_capacity(elems.len());
for elem in elems.iter() {
data.push(*elem);
}
Data::new(data, Shape::new([elems.len()]))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize, const B: usize> From<[[E; B]; A]> for Data<E, 2> {
fn from(elems: [[E; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
data.push(elem);
}
}
Data::new(data, Shape::new([A, B]))
}
}
impl<E: core::fmt::Debug + Copy, const A: usize, const B: usize, const C: usize>
From<[[[E; C]; B]; A]> for Data<E, 3>
{
fn from(elems: [[[E; C]; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B * C);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
for elem in elem.into_iter().take(C) {
data.push(elem);
}
}
}
Data::new(data, Shape::new([A, B, C]))
}
}
impl<
E: core::fmt::Debug + Copy,
const A: usize,
const B: usize,
const C: usize,
const D: usize,
> From<[[[[E; D]; C]; B]; A]> for Data<E, 4>
{
fn from(elems: [[[[E; D]; C]; B]; A]) -> Self {
let mut data = Vec::with_capacity(A * B * C * D);
for elem in elems.into_iter().take(A) {
for elem in elem.into_iter().take(B) {
for elem in elem.into_iter().take(C) {
for elem in elem.into_iter().take(D) {
data.push(elem);
}
}
}
}
Data::new(data, Shape::new([A, B, C, D]))
}
}
impl<E: core::fmt::Debug, const D: usize> core::fmt::Display for Data<E, D> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str(format!("{:?}", &self.value).as_str())
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{rngs::StdRng, SeedableRng};
#[test]
fn should_have_right_num_elements() {
let shape = Shape::new([3, 5, 6]);
let num_elements = shape.num_elements();
let data =
Data::<f32, 3>::random(shape, Distribution::Default, &mut StdRng::from_entropy());
assert_eq!(num_elements, data.value.len());
}
#[test]
fn should_have_right_shape() {
let data = Data::from([[3.0, 5.0, 6.0]]);
assert_eq!(data.shape, Shape::new([1, 3]));
let data = Data::from([[4.0, 5.0, 8.0], [3.0, 5.0, 6.0]]);
assert_eq!(data.shape, Shape::new([2, 3]));
let data = Data::from([3.0, 5.0, 6.0]);
assert_eq!(data.shape, Shape::new([3]));
}
#[test]
fn should_assert_appox_eq_limit() {
let data1 = Data::<f32, 2>::from([[3.0, 5.0, 6.0]]);
let data2 = Data::<f32, 2>::from([[3.01, 5.0, 6.0]]);
data1.assert_approx_eq(&data2, 2);
}
#[test]
#[should_panic]
fn should_assert_appox_eq_above_limit() {
let data1 = Data::<f32, 2>::from([[3.0, 5.0, 6.0]]);
let data2 = Data::<f32, 2>::from([[3.011, 5.0, 6.0]]);
data1.assert_approx_eq(&data2, 2);
}
#[test]
#[should_panic]
fn should_assert_appox_eq_check_shape() {
let data1 = Data::<f32, 2>::from([[3.0, 5.0, 6.0, 7.0]]);
let data2 = Data::<f32, 2>::from([[3.0, 5.0, 6.0]]);
data1.assert_approx_eq(&data2, 2);
}
}