1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
use alloc::vec::Vec;
use core::convert::TryInto;

use crate::check;
use crate::check::TensorCheck;
use crate::ops::FullPrecisionBackend;
use crate::tensor::backend::Backend;
use crate::tensor::stats;
use crate::tensor::{Data, Distribution, Shape};
use crate::Int;
use crate::Tensor;

#[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
use crate::{argsort, sort, sort_with_indices, Float};

impl<const D: usize, B> Tensor<B, D>
where
    B: Backend,
{
    /// Executes an operation on the tensor and modifies its value.
    ///
    /// # Notes
    ///
    /// This won't necessary reuse the same tensor data/buffer, but it should if there is
    /// no other reference pointing to the same tensor.
    ///
    /// Wrapping operations with inplace is not an optimization, it's mainly there if you
    /// want to mutate a tensor by using owned operations. A plausible usage would be to
    /// update the weights of a mutable model reference.
    pub fn inplace<F: FnOnce(Self) -> Self>(&mut self, func: F) {
        let mut tensor_owned = Tensor::empty([0; D], &self.device());
        core::mem::swap(&mut tensor_owned, self);

        let mut tensor_new = func(tensor_owned);
        core::mem::swap(&mut tensor_new, self);
    }

    /// Applies element wise exponential operation.
    ///
    /// `y = e^x`
    pub fn exp(self) -> Self {
        Self::new(B::float_exp(self.primitive))
    }

    /// Applies element wise natural log operation *ln*.
    ///
    /// `y = log(x)`
    pub fn log(self) -> Self {
        Self::new(B::float_log(self.primitive))
    }

    /// Applies the natural logarithm of one plus the input tensor, element-wise.
    ///
    /// `y = log(x+1)`
    pub fn log1p(self) -> Self {
        Self::new(B::float_log1p(self.primitive))
    }

    /// Applies the [error function](https://en.wikipedia.org/wiki/Error_function) element wise.
    ///
    /// `y = erf(x)`
    pub fn erf(self) -> Self {
        Self::new(B::float_erf(self.primitive))
    }

    /// Applies element wise reciprocal operation.
    pub fn recip(self) -> Self {
        Self::new(B::float_recip(self.primitive))
    }

    /// Applies element wise root square operation.
    pub fn sqrt(self) -> Self {
        Self::new(B::float_sqrt(self.primitive))
    }

    /// Applies element wise cosine operation.
    pub fn cos(self) -> Self {
        Self::new(B::float_cos(self.primitive))
    }

    /// Applies element wise sine operation.
    pub fn sin(self) -> Self {
        Self::new(B::float_sin(self.primitive))
    }

    /// Applies element wise hyperbolic tangent operation.
    pub fn tanh(self) -> Self {
        Self::new(B::float_tanh(self.primitive))
    }

    /// Create a tensor from floats (f32) on a given device.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::Tensor;
    ///
    /// fn example<B: Backend>() {
    ///     let device = B::Device::default();
    ///     let _ = Tensor::<B, 1>::from_floats([1.0, 2.0], &device);
    ///     let _ = Tensor::<B, 2>::from_floats([[1.0, 2.0], [3.0, 4.0]], &device);
    /// }
    /// ```
    pub fn from_floats<A: Into<Data<f32, D>>>(floats: A, device: &B::Device) -> Self {
        Self::from_data(floats.into().convert(), device)
    }

    /// Returns a new tensor with the same shape and device as the current tensor and the data
    /// casted to Integer.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::Tensor;
    ///
    /// fn example<B: Backend>() {
    ///     let device = Default::default();
    ///     let float_tensor = Tensor::<B, 1>::from_floats([1.0, 2.0], &device);
    ///     let int_tensor = float_tensor.int();
    /// }
    /// ```
    pub fn int(self) -> Tensor<B, D, Int> {
        Tensor::new(B::float_into_int(self.primitive))
    }

    /// Returns a new tensor with the same shape and device as the current tensor filled with zeros.
    pub fn zeros_like(&self) -> Self {
        Tensor::new(B::float_zeros(self.shape(), &self.device()))
    }

    /// Returns a new tensor with the same shape and device as the current tensor filled with ones.
    pub fn ones_like(&self) -> Self {
        Tensor::new(B::float_ones(self.shape(), &self.device()))
    }

    /// Returns a new tensor with the same shape and device as the current tensor filled random
    /// values sampled from the given distribution.
    pub fn random_like(&self, distribution: Distribution) -> Self {
        Tensor::new(B::float_random(self.shape(), distribution, &self.device()))
    }

    /// Create a one hot tensor.
    ///
    /// # Example
    ///
    /// ```rust
    /// use burn_tensor::backend::Backend;
    /// use burn_tensor::Tensor;
    ///
    /// fn example<B: Backend>() {
    ///     let device = Default::default();
    ///     let one_hot = Tensor::<B, 1>::one_hot(2, 10, &device);
    ///     println!("{}", one_hot.to_data());
    ///     // [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    /// }
    /// ```
    pub fn one_hot(index: usize, num_classes: usize, device: &B::Device) -> Self {
        check!(TensorCheck::one_hot(index, num_classes));

        let mut dims = [1; D];
        dims[D - 1] = num_classes;
        let shape = Shape::new(dims);
        let ranges: Vec<_> = shape.dims.iter().map(|dim| 0..*dim).collect();
        let tensor = Tensor::zeros(shape, device);
        let mut ranges: [core::ops::Range<usize>; D] = ranges.try_into().unwrap();
        ranges[D - 1] = index..index + 1;

        tensor.slice_assign(ranges, Tensor::ones(Shape::new([1; D]), device))
    }

    /// Applies the matrix multiplication operation.
    ///
    /// `C = AB`
    ///
    /// # Panics
    ///
    /// If the two tensors dont' have a compatible shape.
    pub fn matmul(self, other: Self) -> Self {
        check!(TensorCheck::matmul(&self, &other));
        Self::new(B::float_matmul(self.primitive, other.primitive))
    }

    /// Calculate the variance along the given dimension.
    pub fn var(self, dim: usize) -> Self {
        stats::var(self, dim)
    }

    /// Calculate the variance along the given dimension without applying the Bessel’s correction.
    pub fn var_bias(self, dim: usize) -> Self {
        stats::var_bias(self, dim)
    }

    /// Calculate the variance along the given dimension and also returns the mean.
    pub fn var_mean(self, dim: usize) -> (Self, Self) {
        let mean = self.clone().mean_dim(dim);
        let var = stats::var_with_mean(self, mean.clone(), dim);
        (var, mean)
    }

    /// Calculate the variance along the given dimension without applying the Bessel’s correction and also returns the mean.
    pub fn var_mean_bias(self, dim: usize) -> (Self, Self) {
        let mean = self.clone().mean_dim(dim);
        let var = stats::var_with_mean_bias(self, mean.clone(), dim);
        (var, mean)
    }

    /// Returns a tensor with full precision based on the selected backend.
    pub fn into_full_precision(self) -> Tensor<FullPrecisionBackend<B>, D> {
        Tensor::new(B::float_into_full_precision(self.primitive))
    }

    /// Returns a tensor on the selected backend from a full precision tensor.
    pub fn from_full_precision(tensor: Tensor<FullPrecisionBackend<B>, D>) -> Self {
        Self::new(B::float_from_full_precision(tensor.primitive))
    }

    /// Detach the current tensor from the autodiff graph.
    ///
    /// This function does nothing when autodiff is not enabled.
    /// This can be used in batchers or elsewhere to ensure that previous operations are not
    /// considered in the autodiff graph.
    pub fn detach(self) -> Self {
        Self::new(B::float_detach(self.primitive))
    }

    /// Mark the tensor to keep gradients during the backward pass.
    ///
    /// This function does nothing when autodiff is not enabled.
    pub fn require_grad(self) -> Self {
        self.set_require_grad(true)
    }

    /// Returns true if the tensor requires gradients during the backward pass.
    pub fn is_require_grad(&self) -> bool {
        B::float_is_require_grad(&self.primitive)
    }

    /// Mark the tensor as tracked or untracked depending on the require grad argument.
    /// When tracked, the gradients will be available after the backward pass.
    ///
    /// This function does nothing when autodiff is not enabled.
    pub fn set_require_grad(self, require_grad: bool) -> Self {
        Self::new(B::float_set_require_grad(self.primitive, require_grad))
    }

    /// Applies the relu function to the tensor.
    pub(crate) fn relu(self) -> Self {
        Self::new(B::relu(self.primitive))
    }

    /// Calculate covaraince matrix between different entries alongside a given dimension.
    ///
    /// # Arguments
    ///
    /// * `size` - The size of the square matrix.
    /// * `correction_factor` - Is usually 1 for samples and 0 for population.
    pub fn cov(self, dim: usize, correction_factor: usize) -> Tensor<B, D> {
        let n = self.dims()[dim];
        let centered = (self.clone() - self.mean_dim(dim)).swap_dims(dim, 0);
        centered
            .clone()
            .transpose()
            .matmul(centered)
            .div_scalar(n as f32 - correction_factor as f32)
    }

    /// Sort the elements by value in ascending order along a given dimension.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn sort(self, dim: usize) -> Tensor<B, D> {
        Tensor::new(sort::<B, D, Float>(self.primitive, dim, /*descending*/ false).await)
    }

    /// Sort the elements by value in descending order along a given dimension.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn sort_descending(self, dim: usize) -> Tensor<B, D> {
        Tensor::new(sort::<B, D, Float>(self.primitive, dim, /*descending*/ true).await)
    }

    /// Sort the elements by value in ascending order along a given dimension.
    /// Also returns the indices.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn sort_with_indices(self, dim: usize) -> (Tensor<B, D>, Tensor<B, D, Int>) {
        check!(TensorCheck::sort_dim::<D>("Sort_with_indices", dim));
        let (values, indices) =
            sort_with_indices::<B, D, Float>(self.primitive, dim, /*descending*/ false).await;
        (Tensor::new(values), Tensor::new(indices))
    }

    /// Sort the elements by value in descending order along a given dimension.
    /// Also returns the indices.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn sort_descending_with_indices(
        self,
        dim: usize,
    ) -> (Tensor<B, D>, Tensor<B, D, Int>) {
        check!(TensorCheck::sort_dim::<D>("Sort_with_indices", dim));
        let (values, indices) =
            sort_with_indices::<B, D, Float>(self.primitive, dim, /*descending*/ true).await;
        (Tensor::new(values), Tensor::new(indices))
    }

    /// Returns the indices that sort the elements by value in ascending order along a given dimension.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn argsort(self, dim: usize) -> Tensor<B, D, Int> {
        check!(TensorCheck::sort_dim::<D>("Argsort", dim));
        Tensor::new(argsort::<B, D, Float>(self.primitive, dim, /*descending*/ false).await)
    }

    /// Returns the indices that sort the elements by value in descending order along a given dimension.
    ///
    /// This sort is unstable (i.e., may reorder equal elements).
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn argsort_descending(self, dim: usize) -> Tensor<B, D, Int> {
        check!(TensorCheck::sort_dim::<D>("Argsort", dim));
        Tensor::new(argsort::<B, D, Float>(self.primitive, dim, /*descending*/ true).await)
    }

    /// Returns the `k` largest elements of the given input tensor along a given dimension.
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn topk(self, k: usize, dim: usize) -> Tensor<B, D> {
        let k_indices = Tensor::arange(0..k as i64, &self.device());
        self.sort_descending(dim).await.select(dim, k_indices)
    }

    /// Returns the `k` largest elements of the given input tensor along a given dimension.
    /// Also returns the indices.
    #[cfg(all(not(feature = "wasm-sync"), target_family = "wasm"))]
    pub async fn topk_with_indices(
        self,
        k: usize,
        dim: usize,
    ) -> (Tensor<B, D>, Tensor<B, D, Int>) {
        let k_indices = Tensor::arange(0..k as i64, &self.device());
        let (values, indices) = self.sort_descending_with_indices(dim).await;
        (
            values.select(dim, k_indices.clone()),
            indices.select(dim, k_indices),
        )
    }
}