Struct NdArray

Source
pub struct NdArray<E = f32, I = i64, Q = i8> { /* private fields */ }
Expand description

Tensor backend that uses the ndarray crate for executing tensor operations.

This backend is compatible with CPUs and can be compiled for almost any platform, including wasm, arm, and x86.

Trait Implementations§

Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ActivationOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn relu(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Applies the ReLU activation function. Read more
Source§

fn leaky_relu( tensor: <B as Backend>::FloatTensorPrimitive, negative_slope: <B as Backend>::FloatElem, ) -> <B as Backend>::FloatTensorPrimitive

Applies the LeakyReLU activation function. Read more
Source§

fn relu_backward( output: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the ReLU activation function backward. Read more
Source§

fn gelu( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the Gelu activation function. Read more
Source§

fn prelu( tensor: <B as Backend>::FloatTensorPrimitive, alpha: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the PReLu activation function. Read more
Source§

fn gelu_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the Gelu activation function backward. Read more
Source§

fn sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the Sigmoid activation function. Read more
Source§

fn sigmoid_backward( output: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the Sigmoid activation function backward. Read more
Source§

fn hard_sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, alpha: <B as Backend>::FloatElem, beta: <B as Backend>::FloatElem, ) -> <B as Backend>::FloatTensorPrimitive

Applies the hard Sigmoid activation function. Read more
Source§

fn log_sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the LogSigmoid activation function. Read more
Source§

fn log_sigmoid_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Applies the LogSigmoid activation function backward. Read more
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> Backend for NdArray<E, I, Q>

Source§

type Device = NdArrayDevice

Device type.
Source§

type FloatTensorPrimitive = NdArrayTensorFloat

Tensor primitive to be used for all float operations.
Source§

type FloatElem = E

Default float element type.
Source§

type IntTensorPrimitive = NdArrayTensor<I>

Tensor primitive to be used for all int operations.
Source§

type IntElem = I

Int element type.
Source§

type BoolTensorPrimitive = NdArrayTensor<bool>

Tensor primitive to be used for all bool operations.
Source§

type BoolElem = bool

Tensor primitive to be used for all bool operations.
Source§

type QuantizedTensorPrimitive = NdArrayQTensor<Q>

Tensor primitive to be used for all quantized operations.
Source§

type QuantizedEncoding = Q

Quantized tensor encoding type.
Source§

fn ad_enabled() -> bool

If autodiff is enabled.
Source§

fn name(_device: &Self::Device) -> String

Name of the backend.
Source§

fn seed(seed: u64)

Seed the backend.
Source§

fn sync(_device: &Self::Device)

Sync the backend, ensure that all computation are finished.
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BackendIr for NdArray<E, I, Q>

Source§

type Handle = HandleKind<NdArray<E, I, Q>>

The type that can be used to point to a tensor of any kind.
Source§

fn float_tensor(handle: TensorHandle<Self::Handle>) -> FloatTensor<Self>

Convert a handle to a float tensor.
Source§

fn int_tensor(handle: TensorHandle<Self::Handle>) -> IntTensor<Self>

Convert a handle to an int tensor.
Source§

fn bool_tensor(handle: TensorHandle<Self::Handle>) -> BoolTensor<Self>

Convert a handle to a bool tensor.
Source§

fn quantized_tensor(handle: TensorHandle<Self::Handle>) -> QuantizedTensor<Self>

Convert a handle to a quantized tensor.
Source§

fn float_tensor_handle(tensor: FloatTensor<Self>) -> Self::Handle

Convert a float tensor to a handle.
Source§

fn int_tensor_handle(tensor: IntTensor<Self>) -> Self::Handle

Convert an int tensor to a handle.
Source§

fn bool_tensor_handle(tensor: BoolTensor<Self>) -> Self::Handle

Convert a bool tensor to a handle.
Source§

fn quantized_tensor_handle(tensor: QuantizedTensor<Self>) -> Self::Handle

Convert a quantized tensor to a handle.
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn bool_from_data( data: TensorData, _device: &NdArrayDevice, ) -> NdArrayTensor<bool>

Creates a tensor from the data structure. Read more
Source§

async fn bool_into_data(tensor: NdArrayTensor<bool>) -> TensorData

Converts the tensor to a data structure. Read more
Source§

fn bool_to_device( tensor: NdArrayTensor<bool>, _device: &NdArrayDevice, ) -> NdArrayTensor<bool>

Moves the tensor to the device.
Source§

fn bool_reshape( tensor: NdArrayTensor<bool>, shape: Shape, ) -> NdArrayTensor<bool>

Reshapes the tensor. Read more
Source§

fn bool_slice( tensor: NdArrayTensor<bool>, ranges: &[Range<usize>], ) -> NdArrayTensor<bool>

Gets the values from the tensor for the given ranges. Read more
Source§

fn bool_into_int(tensor: NdArrayTensor<bool>) -> NdArrayTensor<I>

Converts bool tensor to int tensor. Read more
Source§

fn bool_device(_tensor: &NdArrayTensor<bool>) -> <NdArray<E> as Backend>::Device

Gets the device of the tensor. Read more
Source§

fn bool_empty( shape: Shape, _device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor<bool>

Creates a new bool tensor. Read more
Source§

fn bool_slice_assign( tensor: NdArrayTensor<bool>, ranges: &[Range<usize>], value: NdArrayTensor<bool>, ) -> NdArrayTensor<bool>

Sets the values in the tensor for the given ranges. Read more
Source§

fn bool_cat( tensors: Vec<NdArrayTensor<bool>>, dim: usize, ) -> NdArrayTensor<bool>

Concatenates the tensors along the given dimension. Read more
Source§

fn bool_equal( lhs: NdArrayTensor<bool>, rhs: NdArrayTensor<bool>, ) -> NdArrayTensor<bool>

Equates the two tensors. Read more
Source§

fn bool_not(tensor: NdArrayTensor<bool>) -> NdArrayTensor<bool>

Inverses boolean values. Read more
Source§

fn bool_and( lhs: NdArrayTensor<bool>, rhs: NdArrayTensor<bool>, ) -> NdArrayTensor<bool>

Executes the logical and (&&) operation on two boolean tensors. Read more
Source§

fn bool_or( lhs: NdArrayTensor<bool>, rhs: NdArrayTensor<bool>, ) -> NdArrayTensor<bool>

Executes the logical or (||) operation on two boolean tensors. Read more
Source§

fn bool_into_float(tensor: NdArrayTensor<bool>) -> FloatTensor<Self>

Converts bool tensor to float tensor. Read more
Source§

fn bool_swap_dims( tensor: NdArrayTensor<bool>, dim1: usize, dim2: usize, ) -> NdArrayTensor<bool>

Swaps two dimensions of a bool tensor. Read more
Source§

fn bool_permute( tensor: NdArrayTensor<bool>, axes: &[usize], ) -> NdArrayTensor<bool>

Permutes the dimensions of a tensor. Read more
Source§

fn bool_expand(tensor: NdArrayTensor<bool>, shape: Shape) -> NdArrayTensor<bool>

Broadcasts the bool tensor to the given shape.
Source§

fn bool_flip(tensor: NdArrayTensor<bool>, axes: &[usize]) -> NdArrayTensor<bool>

Reverse the order of elements in a tensor along the given axes. Read more
Source§

fn bool_repeat_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::BoolTensorPrimitive

Repeats one dimension of the tensor a given number of times along that dimension. Read more
Source§

fn bool_not_equal( lhs: <B as Backend>::BoolTensorPrimitive, rhs: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Element-wise non-equality comparison. Read more
Source§

fn bool_transpose( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Transposes a bool tensor. Read more
Source§

fn bool_narrow( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, start: usize, length: usize, ) -> <B as Backend>::BoolTensorPrimitive

Returns a new tensor with the given dimension narrowed to the given range. Read more
Source§

fn bool_chunk( tensor: <B as Backend>::BoolTensorPrimitive, chunks: usize, dim: usize, ) -> Vec<<B as Backend>::BoolTensorPrimitive>

Split the tensor along the given dimension into chunks. Read more
Source§

fn bool_split( tensor: <B as Backend>::BoolTensorPrimitive, split_size: usize, dim: usize, ) -> Vec<<B as Backend>::BoolTensorPrimitive>

Split the tensor along the given dimension into chunks of split_size. Read more
Source§

fn bool_split_with_sizes( tensor: <B as Backend>::BoolTensorPrimitive, split_sizes: Vec<usize>, dim: usize, ) -> Vec<<B as Backend>::BoolTensorPrimitive>

Split the tensor along the given dimension into chunks with sizes in dim according to split_sizes. Read more
Source§

fn bool_any( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the boolean tensor evaluates to True. Read more
Source§

fn bool_any_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the boolean tensor evaluates to True along a given dimension dim. Read more
Source§

fn bool_all( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the boolean tensor evaluate to True. Read more
Source§

fn bool_all_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the boolean tensor evaluate to True along a given dimension dim. Read more
Source§

fn bool_argwhere( tensor: <B as Backend>::BoolTensorPrimitive, ) -> impl Future<Output = <B as Backend>::IntTensorPrimitive> + Send + 'static

Compute the indices of the elements that are non-zero, grouped by element. Read more
Source§

fn bool_nonzero( tensor: <B as Backend>::BoolTensorPrimitive, ) -> impl Future<Output = Vec<<B as Backend>::IntTensorPrimitive>> + Send + 'static

Compute the indices of the elements that are non-zero. Read more
Source§

impl<E: Clone, I: Clone, Q: Clone> Clone for NdArray<E, I, Q>

Source§

fn clone(&self) -> NdArray<E, I, Q>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<E: Debug, I: Debug, Q: Debug> Debug for NdArray<E, I, Q>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<E: Default, I: Default, Q: Default> Default for NdArray<E, I, Q>

Source§

fn default() -> NdArray<E, I, Q>

Returns the “default value” for a type. Read more
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> FloatTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn float_from_data( data: TensorData, _device: &NdArrayDevice, ) -> FloatTensor<Self>

Creates a new tensor from the data structure. Read more
Source§

fn float_random( shape: Shape, distribution: Distribution, device: &NdArrayDevice, ) -> FloatTensor<Self>

Creates a new tensor with random values. Read more
Source§

async fn float_into_data(tensor: FloatTensor<Self>) -> TensorData

Converts the tensor to a data structure. Read more
Source§

fn float_device(_tensor: &FloatTensor<Self>) -> NdArrayDevice

Gets the device of the tensor. Read more
Source§

fn float_to_device( tensor: FloatTensor<Self>, _device: &NdArrayDevice, ) -> FloatTensor<Self>

Moves the tensor to the given device. Read more
Source§

fn float_empty( shape: Shape, device: &<NdArray<E> as Backend>::Device, ) -> FloatTensor<Self>

Creates an empty tensor with the given shape. Read more
Source§

fn float_add( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Adds two tensors together. Read more
Source§

fn float_add_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>

Adds a scalar to a tensor. Read more
Source§

fn float_sub( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Subtracts two tensors. Read more
Source§

fn float_sub_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>

Subtracts a scalar from a tensor. Read more
Source§

fn float_mul( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Multiplies two tensors together element-wise.
Source§

fn float_mul_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>

Multiplies a tensor by a scalar. Read more
Source§

fn float_div( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Divides two tensors element-wise. Read more
Source§

fn float_div_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>

Divides a tensor by a scalar. Read more
Source§

fn float_remainder( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Computes the remainder of division between two tensors element-wise. Read more
Source§

fn float_remainder_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>

Computes the modulus of a tensor given a scalar. Read more
Source§

fn float_matmul( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Multiplies two tensors together using matrix multiplication. Read more
Source§

fn float_neg(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Negates a tensor element-wise.
Source§

fn float_recip(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Calculates the reciprocals element-wise
Source§

fn float_swap_dims( tensor: FloatTensor<Self>, dim1: usize, dim2: usize, ) -> FloatTensor<Self>

Swaps two dimensions of a tensor. Read more
Source§

fn float_reshape(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>

Reshapes a tensor. Read more
Source§

fn float_gather( dim: usize, tensor: FloatTensor<Self>, indices: NdArrayTensor<I>, ) -> FloatTensor<Self>

Gather elements from a tensor. Read more
Source§

fn float_scatter( dim: usize, tensor: FloatTensor<Self>, indices: NdArrayTensor<I>, value: FloatTensor<Self>, ) -> FloatTensor<Self>

Scatter elements into a tensor. Read more
Source§

fn float_select( tensor: FloatTensor<Self>, dim: usize, indices: NdArrayTensor<I>, ) -> FloatTensor<Self>

Select tensor elements along the given dimension corresponding for the given indices. Read more
Source§

fn float_select_assign( tensor: FloatTensor<Self>, dim: usize, indices: NdArrayTensor<I>, value: FloatTensor<Self>, ) -> FloatTensor<Self>

Assign the selected elements along the given dimension corresponding for the given indices to the given value. Read more
Source§

fn float_slice( tensor: FloatTensor<Self>, ranges: &[Range<usize>], ) -> FloatTensor<Self>

Select tensor elements corresponding for the given ranges. Read more
Source§

fn float_slice_assign( tensor: FloatTensor<Self>, ranges: &[Range<usize>], value: FloatTensor<Self>, ) -> FloatTensor<Self>

Assign the selected elements corresponding for the given ranges to the given value. Read more
Source§

fn float_mask_where( tensor: FloatTensor<Self>, mask: NdArrayTensor<bool>, value: FloatTensor<Self>, ) -> FloatTensor<Self>

Update the given tensor with the value tensor where the mask is true. Read more
Source§

fn float_mask_fill( tensor: FloatTensor<Self>, mask: NdArrayTensor<bool>, value: E, ) -> FloatTensor<Self>

Update the given tensor with the value where the mask is true. Read more
Source§

fn float_equal( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor<bool>

Equal comparison of two tensors. Read more
Source§

fn float_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor<bool>

Equal comparison of a tensor and a scalar. Read more
Source§

fn float_greater( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor<bool>

Greater than comparison of two tensors. Read more
Source§

fn float_greater_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor<bool>

Greater than comparison of a tensor and a scalar. Read more
Source§

fn float_greater_equal( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor<bool>

Greater than or equal comparison of two tensors. Read more
Source§

fn float_greater_equal_elem( lhs: FloatTensor<Self>, rhs: E, ) -> NdArrayTensor<bool>

Greater than or equal comparison of a tensor and a scalar. Read more
Source§

fn float_lower( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor<bool>

Less than comparison of two tensors. Read more
Source§

fn float_lower_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor<bool>

Less than comparison of a tensor and a scalar. Read more
Source§

fn float_lower_equal( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor<bool>

Less than or equal comparison of two tensors. Read more
Source§

fn float_lower_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor<bool>

Less than or equal comparison of a tensor and a scalar. Read more
Source§

fn float_detach(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Detaches a tensor from the computation graph.
Source§

fn float_mean(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Mean of all elements in a tensor. Read more
Source§

fn float_sum(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Sum of all elements in a tensor. Read more
Source§

fn float_mean_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>

Mean of all elements in a tensor along a dimension. Read more
Source§

fn float_sum_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>

Sum of all elements in a tensor along a dimension. Read more
Source§

fn float_argmax(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor<I>

Gets the indices of the maximum elements of a tensor along an axis. Read more
Source§

fn float_argmin(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor<I>

Gets the indices of the minimum elements of a tensor along an axis. Read more
Source§

fn float_exp(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with exponential values. Read more
Source§

fn float_log(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with natural logarithm values. Read more
Source§

fn float_prod(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Product of all elements in a tensor. Read more
Source§

fn float_prod_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>

Product of all elements in a tensor along a dimension. Read more
Source§

fn float_log1p(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with logarithm values of (1 + Xi). Read more
Source§

fn float_powf_scalar(tensor: FloatTensor<Self>, value: f32) -> FloatTensor<Self>

Returns a new tensor with values raised to the power of float value. Read more
Source§

fn float_sqrt(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with square root values. Read more
Source§

fn float_abs(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with absolute values. Read more
Source§

fn float_cos(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with cosine values. Read more
Source§

fn float_sin(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with sine values. Read more
Source§

fn float_tanh(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with hyperbolic tangent values. Read more
Source§

fn float_round(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with rounded values. Read more
Source§

fn float_floor(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with floored values. Read more
Source§

fn float_ceil(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with ceiled values. Read more
Source§

fn float_erf(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns a new tensor with the error function values. Read more
Source§

fn float_cat(tensors: Vec<FloatTensor<Self>>, dim: usize) -> FloatTensor<Self>

Concatenates tensors along a dimension. Read more
Source§

fn float_clamp_min(tensor: FloatTensor<Self>, min: E) -> FloatTensor<Self>

Clamps a tensor under a minimum value. Read more
Source§

fn float_clamp_max(tensor: FloatTensor<Self>, max: E) -> FloatTensor<Self>

Clamps a tensor over a maximum value. Read more
Source§

fn float_clamp(tensor: FloatTensor<Self>, min: E, max: E) -> FloatTensor<Self>

Clamps a tensor between a minimum and maximum value. Read more
Source§

fn float_into_int(tensor: FloatTensor<Self>) -> NdArrayTensor<I>

Converts float tensor to int tensor. Read more
Source§

fn float_powf( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>

Element-wise power with a FloatTensor. Read more
Source§

fn float_permute(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>

Permutes the dimensions of a tensor. Read more
Source§

fn float_flip(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>

Reverse the order of elements in a tensor along the given axes. Read more
Source§

fn float_sign(tensor: FloatTensor<Self>) -> FloatTensor<Self>

Returns the signs of the float tensor. Read more
Source§

fn float_expand(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>

Broadcasts the float tensor to the given shape.
Source§

fn float_cast(tensor: FloatTensor<Self>, dtype: FloatDType) -> FloatTensor<Self>

Converts a tensor to another floating point data type. Read more
Source§

fn float_zeros( shape: Shape, device: &<B as Backend>::Device, ) -> <B as Backend>::FloatTensorPrimitive

Creates a new tensor with zeros. Read more
Source§

fn float_ones( shape: Shape, device: &<B as Backend>::Device, ) -> <B as Backend>::FloatTensorPrimitive

Creates a new tensor with ones. Read more
Source§

fn float_full( shape: Shape, fill_value: <B as Backend>::FloatElem, device: &<B as Backend>::Device, ) -> <B as Backend>::FloatTensorPrimitive

Creates a tensor filled with given value. Read more
Source§

fn float_repeat_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::FloatTensorPrimitive

Repeat the tensor along the given dimension. Read more
Source§

fn float_transpose( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Transposes a tensor. Read more
Source§

fn float_not_equal( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Element-wise non-equality comparison. Read more
Source§

fn float_not_equal_elem( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::BoolTensorPrimitive

Element-wise non-equality comparison with a scalar. Read more
Source§

fn float_set_require_grad( tensor: <B as Backend>::FloatTensorPrimitive, _require_grad: bool, ) -> <B as Backend>::FloatTensorPrimitive

Sets the require_grad flag of a tensor.
Source§

fn float_is_require_grad(_tensor: &<B as Backend>::FloatTensorPrimitive) -> bool

Returns the require_grad flag of a tensor.
Source§

fn float_powi( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Element-wise power with an IntTensor. Read more
Source§

fn float_powi_scalar( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::FloatTensorPrimitive

raises a tensor to the power of an int scalar. Read more
Source§

fn float_tan( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Returns a new tensor with tangent values. Read more
Source§

fn float_cosh( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Returns a new tensor with hyperbolic cosine values. Read more
Source§

fn float_sinh( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Returns a new tensor with hyperbolic sine values. Read more
Source§

fn float_max( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Gets the maximum element of a tensor. Read more
Source§

fn float_max_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive

Gets the maximum elements of a tensor along an axis. Read more
Source§

fn float_max_dim_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the maximum elements of a tensor along an axis and their indices. Read more
Source§

fn float_min( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Gets the minimum element of a tensor. Read more
Source§

fn float_min_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive

Gets the minimum elements of a tensor along an axis. Read more
Source§

fn float_min_dim_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the minimum elements of a tensor along an axis and their indices. Read more
Source§

fn float_max_abs( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Gets the maximum absolute element of a tensor. Read more
Source§

fn float_max_abs_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive

Gets the maximum absolute elements of a tensor along an axis. Read more
Source§

fn float_narrow( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, start: usize, length: usize, ) -> <B as Backend>::FloatTensorPrimitive

Returns a new tensor with the given dimension narrowed to the given range. Read more
Source§

fn float_chunk( tensor: <B as Backend>::FloatTensorPrimitive, chunks: usize, dim: usize, ) -> Vec<<B as Backend>::FloatTensorPrimitive>

Split the tensor along the given dimension into chunks. Read more
Source§

fn float_split( tensor: <B as Backend>::FloatTensorPrimitive, split_size: usize, dim: usize, ) -> Vec<<B as Backend>::FloatTensorPrimitive>

Split the tensor along the given dimension into chunks of split_size. Read more
Source§

fn float_split_with_sizes( tensor: <B as Backend>::FloatTensorPrimitive, split_sizes: Vec<usize>, dim: usize, ) -> Vec<<B as Backend>::FloatTensorPrimitive>

Split the tensor along the given dimension into chunks with sizes in dim according to split_sizes. Read more
Source§

fn float_any( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the float tensor evaluates to True. Read more
Source§

fn float_any_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the float tensor evaluates to True along a given dimension dim. Read more
Source§

fn float_all( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the float tensor evaluate to True. Read more
Source§

fn float_all_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the float tensor evaluate to True along a given dimension dim. Read more
Source§

fn float_sort( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::FloatTensorPrimitive

Sort the elements of the input tensor by value in along a given dimension. Read more
Source§

fn float_sort_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Sort the elements of the input tensor by value in along a given dimension. Read more
Source§

fn float_argsort( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive

Returns the indices that sort the elements of the input tensor by value along a given dimension. Read more
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> IntTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn int_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor<I>

Creates a tensor from the data structure. Read more
Source§

async fn int_into_data(tensor: NdArrayTensor<I>) -> TensorData

Converts the tensor to a data structure. Read more
Source§

fn int_to_device( tensor: NdArrayTensor<I>, _device: &NdArrayDevice, ) -> NdArrayTensor<I>

Moves the tensor to the given device.
Source§

fn int_reshape(tensor: NdArrayTensor<I>, shape: Shape) -> NdArrayTensor<I>

Reshapes the tensor. Read more
Source§

fn int_slice( tensor: NdArrayTensor<I>, ranges: &[Range<usize>], ) -> NdArrayTensor<I>

Gets the element at the given indices. Read more
Source§

fn int_device(_tensor: &NdArrayTensor<I>) -> <NdArray<E> as Backend>::Device

Gets the device of the tensor. Read more
Source§

fn int_empty( shape: Shape, device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor<I>

Creates a new int tensor. Read more
Source§

fn int_mask_where( tensor: NdArrayTensor<I>, mask: NdArrayTensor<bool>, source: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Fills the tensor with values from the source tensor if the mask is true at the given indices. Read more
Source§

fn int_mask_fill( tensor: NdArrayTensor<I>, mask: NdArrayTensor<bool>, value: I, ) -> NdArrayTensor<I>

Fills the tensor with the given value if the mask is true at the given indices. Read more
Source§

fn int_slice_assign( tensor: NdArrayTensor<I>, ranges: &[Range<usize>], value: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Sets the element at the given indices. Read more
Source§

fn int_cat(tensors: Vec<NdArrayTensor<I>>, dim: usize) -> NdArrayTensor<I>

Concatenates the given tensors along the given dimension. Read more
Source§

fn int_equal( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<bool>

Element-wise equality comparison. Read more
Source§

fn int_equal_elem(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<bool>

Element-wise equality comparison with a scalar. Read more
Source§

fn int_greater( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<bool>

Element-wise greater than comparison. Read more
Source§

fn int_greater_elem(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<bool>

Element-wise greater than comparison with a scalar. Read more
Source§

fn int_greater_equal( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<bool>

Element-wise greater than or equal comparison. Read more
Source§

fn int_greater_equal_elem(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<bool>

Element-wise greater than or equal comparison with a scalar. Read more
Source§

fn int_lower( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<bool>

Element-wise less than comparison. Read more
Source§

fn int_lower_elem(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<bool>

Element-wise less than comparison with a scalar. Read more
Source§

fn int_lower_equal( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<bool>

Element-wise less than or equal comparison. Read more
Source§

fn int_lower_equal_elem(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<bool>

Element-wise less than or equal comparison with a scalar. Read more
Source§

fn int_add(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise addition. Read more
Source§

fn int_add_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Element-wise addition with a scalar. Read more
Source§

fn int_sub(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise subtraction. Read more
Source§

fn int_sub_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Element-wise subtraction with a scalar. Read more
Source§

fn int_mul(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise multiplication. Read more
Source§

fn int_mul_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Element-wise multiplication with a scalar. Read more
Source§

fn int_div(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise division. Read more
Source§

fn int_div_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Element-wise division with a scalar. Read more
Source§

fn int_remainder( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Element-wise modulus. Read more
Source§

fn int_remainder_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Element-wise modulus with a scalar. Read more
Source§

fn int_neg(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise negation. Read more
Source§

fn int_zeros( shape: Shape, device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor<I>

Creates a tensor of zeros. Read more
Source§

fn int_ones( shape: Shape, device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor<I>

Creates a tensor of ones. Read more
Source§

fn int_full( shape: Shape, fill_value: I, device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor<I>

Creates a tensor filled with given value. Read more
Source§

fn int_sum(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Sums all elements in the tensor. Read more
Source§

fn int_sum_dim(tensor: NdArrayTensor<I>, dim: usize) -> NdArrayTensor<I>

Sums all elements in the tensor along a dimension. Read more
Source§

fn int_prod(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Computes the product of all elements in the tensor. Read more
Source§

fn int_prod_dim(tensor: NdArrayTensor<I>, dim: usize) -> NdArrayTensor<I>

Computes the product of all elements in the tensor along a dimension. Read more
Source§

fn int_mean(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Computes the mean of all elements in the tensor. Read more
Source§

fn int_mean_dim(tensor: NdArrayTensor<I>, dim: usize) -> NdArrayTensor<I>

Computes the mean of all elements in the tensor along a dimension. Read more
Source§

fn int_gather( dim: usize, tensor: NdArrayTensor<I>, indices: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Gather elements from the tensor at the given indices. Read more
Source§

fn int_scatter( dim: usize, tensor: NdArrayTensor<I>, indices: NdArrayTensor<I>, value: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Scatter a given value to the tensor at the given indices. Read more
Source§

fn int_select( tensor: NdArrayTensor<I>, dim: usize, indices: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Select tensor elements along the given dimension corresponding to the given indices. Read more
Source§

fn int_select_assign( tensor: NdArrayTensor<I>, dim: usize, indices: NdArrayTensor<I>, value: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Assign the selected elements along the given dimension corresponding to the given indices to the given value. Read more
Source§

fn int_argmax(tensor: NdArrayTensor<I>, dim: usize) -> NdArrayTensor<I>

Gets the indices of the maximum elements along a dimension. Read more
Source§

fn int_argmin(tensor: NdArrayTensor<I>, dim: usize) -> NdArrayTensor<I>

Gets the indices of the minimum elements along a dimension. Read more
Source§

fn int_clamp_min(tensor: NdArrayTensor<I>, min: I) -> NdArrayTensor<I>

Clamps a tensor under a minimum value. Read more
Source§

fn int_clamp_max(tensor: NdArrayTensor<I>, max: I) -> NdArrayTensor<I>

Clamps a tensor over a maximum value. Read more
Source§

fn int_clamp(tensor: NdArrayTensor<I>, min: I, max: I) -> NdArrayTensor<I>

Clamps a tensor between a minimum and maximum value. Read more
Source§

fn int_abs(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Returns a new tensor with absolute values. Read more
Source§

fn int_into_float(tensor: NdArrayTensor<I>) -> FloatTensor<Self>

Converts int tensor to float tensor. Read more
Source§

fn int_swap_dims( tensor: NdArrayTensor<I>, dim1: usize, dim2: usize, ) -> NdArrayTensor<I>

Swaps two dimensions of an int tensor. Read more
Source§

fn int_random( shape: Shape, distribution: Distribution, device: &NdArrayDevice, ) -> NdArrayTensor<I>

Creates a new int tensor with random values. Read more
Source§

fn int_powi(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Element-wise power with a IntTensor. Read more
Source§

fn int_powf(lhs: NdArrayTensor<I>, rhs: FloatTensor<Self>) -> NdArrayTensor<I>

Element-wise power with a floatTensor. Read more
Source§

fn int_powf_scalar(lhs: NdArrayTensor<I>, rhs: f32) -> NdArrayTensor<I>

Element-wise power with a floatTensor. Read more
Source§

fn int_permute(tensor: NdArrayTensor<I>, axes: &[usize]) -> NdArrayTensor<I>

Permutes the dimensions of a tensor. Read more
Source§

fn int_flip(tensor: NdArrayTensor<I>, axes: &[usize]) -> NdArrayTensor<I>

Reverse the order of elements in a tensor along the given axes. Read more
Source§

fn int_sign(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Returns the signs of the int tensor. Read more
Source§

fn int_expand(tensor: NdArrayTensor<I>, shape: Shape) -> NdArrayTensor<I>

Broadcasts the int tensor to the given shape.
Source§

fn bitwise_and(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Bitwise AND operation for Int Tensors
Source§

fn bitwise_and_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Bitwise AND operation for Int Tensors with a scalar
Source§

fn bitwise_or(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Bitwise OR operation for Int Tensors
Source§

fn bitwise_or_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Bitwise OR operation for Int Tensors with a scalar
Source§

fn bitwise_xor(lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>) -> NdArrayTensor<I>

Bitwise XOR operation for Int Tensors
Source§

fn bitwise_xor_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Bitwise XOR operation for Int Tensors with a scalar
Source§

fn bitwise_not(tensor: NdArrayTensor<I>) -> NdArrayTensor<I>

Bitwise NOT operation for Int Tensors
Source§

fn bitwise_left_shift( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Bitwise left shift operation for Int Tensors
Source§

fn bitwise_left_shift_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Bitwise left shift operation for Int Tensors with a scalar
Source§

fn bitwise_right_shift( lhs: NdArrayTensor<I>, rhs: NdArrayTensor<I>, ) -> NdArrayTensor<I>

Bitwise right shift operation for Int Tensors
Source§

fn bitwise_right_shift_scalar(lhs: NdArrayTensor<I>, rhs: I) -> NdArrayTensor<I>

Bitwise right shift operation for Int Tensors with a scalar
Source§

fn int_repeat_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::IntTensorPrimitive

Repeats the tensor along the given dimension the given number of times. Read more
Source§

fn int_not_equal( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Element-wise non-equality comparison. Read more
Source§

fn int_not_equal_elem( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::BoolTensorPrimitive

Element-wise non-equality comparison with a scalar. Read more
Source§

fn int_powi_scalar( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::IntTensorPrimitive

Element-wise power with a scalar. Read more
Source§

fn int_max( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive

Gets the maximum element in the tensor. Read more
Source§

fn int_max_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive

Gets the maximum element in the tensor along a dimension. Read more
Source§

fn int_max_dim_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the maximum elements and corresponding indices along a dimension. Read more
Source§

fn int_max_abs( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive

Gets the maximum absolute element in the tensor. Read more
Source§

fn int_max_abs_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive

Gets the maximum absolute element in the tensor along a dimension. Read more
Source§

fn int_min( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive

Gets the minimum element in the tensor. Read more
Source§

fn int_min_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive

Gets the minimum elements in the tensor along a dimension. Read more
Source§

fn int_min_dim_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the minimum elements and corresponding indices along a dimension. Read more
Source§

fn int_transpose( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive

Transposes an int tensor. Read more
Source§

fn int_narrow( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, start: usize, length: usize, ) -> <B as Backend>::IntTensorPrimitive

Returns a new tensor with the given dimension narrowed to the given range. Read more
Source§

fn int_chunk( tensor: <B as Backend>::IntTensorPrimitive, chunks: usize, dim: usize, ) -> Vec<<B as Backend>::IntTensorPrimitive>

Split the tensor along the given dimension into chunks. Read more
Source§

fn int_split( tensor: <B as Backend>::IntTensorPrimitive, split_size: usize, dim: usize, ) -> Vec<<B as Backend>::IntTensorPrimitive>

Split the tensor along the given dimension into chunks of split_size. Read more
Source§

fn int_split_with_sizes( tensor: <B as Backend>::IntTensorPrimitive, split_sizes: Vec<usize>, dim: usize, ) -> Vec<<B as Backend>::IntTensorPrimitive>

Split the tensor along the given dimension into chunks with sizes in dim according to split_sizes. Read more
Source§

fn int_arange_step( range: Range<i64>, step: usize, device: &<B as Backend>::Device, ) -> <B as Backend>::IntTensorPrimitive

Creates a new tensor with values from the given range with the given step size. Read more
Source§

fn int_arange( range: Range<i64>, device: &<B as Backend>::Device, ) -> <B as Backend>::IntTensorPrimitive

Creates a new tensor with values from the given range. Read more
Source§

fn int_any( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the int tensor evaluates to True. Read more
Source§

fn int_any_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the int tensor evaluates to True along a given dimension dim. Read more
Source§

fn int_all( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the int tensor evaluate to True. Read more
Source§

fn int_all_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the int tensor evaluate to True along a given dimension dim. Read more
Source§

fn int_sort( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive

Sort the elements of the input tensor by value along a given dimension. Read more
Source§

fn int_sort_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Sort the elements of the input tensor by value along a given dimension. Read more
Source§

fn int_argsort( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive

Returns the indices that sort the elements of the input tensor by value along a given dimension. Read more
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ModuleOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn conv2d( x: NdArrayTensorFloat, weight: NdArrayTensorFloat, bias: Option<NdArrayTensorFloat>, options: ConvOptions<2>, ) -> NdArrayTensorFloat

Two dimensional convolution. Read more
Source§

fn deform_conv2d( x: FloatTensor<Self>, offset: FloatTensor<Self>, weight: FloatTensor<Self>, mask: Option<FloatTensor<Self>>, bias: Option<FloatTensor<Self>>, options: DeformConvOptions<2>, ) -> FloatTensor<Self>

Two dimensional deformable convolution. Read more
Source§

fn deform_conv2d_backward( x: FloatTensor<Self>, offset: FloatTensor<Self>, weight: FloatTensor<Self>, mask: Option<FloatTensor<Self>>, bias: Option<FloatTensor<Self>>, output_grad: FloatTensor<Self>, options: DeformConvOptions<2>, ) -> DeformConv2dBackward<Self>

Backward pass for the deform_conv2d operation.
Source§

fn conv_transpose2d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvTransposeOptions<2>, ) -> FloatTensor<Self>

Two dimensional transposed convolution. Read more
Source§

fn avg_pool2d( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool, ) -> FloatTensor<Self>

Two dimensional avg pooling. Read more
Source§

fn avg_pool2d_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool, ) -> FloatTensor<Self>

Backward pass for the avg pooling 2d operation.
Source§

fn max_pool2d( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], ) -> FloatTensor<Self>

Two dimensional max pooling. Read more
Source§

fn max_pool2d_with_indices( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], ) -> MaxPool2dWithIndices<NdArray<E, I, Q>>

Two dimensional max pooling with indices. Read more
Source§

fn max_pool2d_with_indices_backward( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], output_grad: FloatTensor<Self>, indices: NdArrayTensor<I>, ) -> MaxPool2dBackward<NdArray<E, I, Q>>

Backward pass for the max pooling 2d operation.
Source§

fn adaptive_avg_pool2d( x: FloatTensor<Self>, output_size: [usize; 2], ) -> FloatTensor<Self>

Two dimensional adaptive avg pooling. Read more
Source§

fn adaptive_avg_pool2d_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, ) -> FloatTensor<Self>

Backward pass for the adaptive avg pooling 2d operation.
Source§

fn interpolate( x: FloatTensor<Self>, output_size: [usize; 2], options: InterpolateOptions, ) -> FloatTensor<Self>

Down/up samples the input. Read more
Source§

fn interpolate_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, output_size: [usize; 2], options: InterpolateOptions, ) -> FloatTensor<Self>

Backward pass for the interpolate operation.
Source§

fn conv3d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvOptions<3>, ) -> FloatTensor<Self>

Three dimensional convolution. Read more
Source§

fn conv_transpose3d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvTransposeOptions<3>, ) -> FloatTensor<Self>

Three dimensional transposed convolution. Read more
Source§

fn embedding( weights: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Embedding operation. Read more
Source§

fn embedding_backward( weights: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Embedding backward operation. Read more
Source§

fn conv1d( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: Option<<B as Backend>::FloatTensorPrimitive>, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

One dimensional convolution. Read more
Source§

fn conv1d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv1d operation, returning the gradient for x.
Source§

fn conv1d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv1d operation, returning the gradient for weight.
Source§

fn conv1d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv1d operation, returning the gradient for bias.
Source§

fn conv2d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv2d operation, returning the gradient for x.
Source§

fn conv2d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv2d operation, returning the gradient for weight.
Source§

fn conv2d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv2d operation, returning the gradient for bias.
Source§

fn conv3d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv3d operation, returning the gradient for x.
Source§

fn conv3d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv3d operation, returning the gradient for weight.
Source§

fn conv3d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv3d operation, returning the gradient for bias.
Source§

fn conv_transpose1d( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: Option<<B as Backend>::FloatTensorPrimitive>, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

One dimensional transposed convolution. Read more
Source§

fn conv_transpose1d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 1d operation, returning the gradient for x.
Source§

fn conv_transpose1d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 1d operation, returning the gradient for weight.
Source§

fn conv_transpose1d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 1d operation, returning the gradient for bias.
Source§

fn conv_transpose2d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 2d operation, returning the gradient for x.
Source§

fn conv_transpose2d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 2d operation, returning the gradient for weight.
Source§

fn conv_transpose2d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 2d operation, returning the gradient for bias.
Source§

fn conv_transpose3d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 3d operation, returning the gradient for x.
Source§

fn conv_transpose3d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 3d operation, returning the gradient for weight.
Source§

fn conv_transpose3d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the conv transpose 3d operation, returning the gradient for bias.
Source§

fn unfold4d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: [usize; 2], options: UnfoldOptions, ) -> <B as Backend>::FloatTensorPrimitive

Four-dimensional unfolding. Read more
Source§

fn avg_pool1d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool, ) -> <B as Backend>::FloatTensorPrimitive

One dimensional avg pooling. Read more
Source§

fn avg_pool1d_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the avg pooling 1d operation.
Source§

fn adaptive_avg_pool1d( x: <B as Backend>::FloatTensorPrimitive, output_size: usize, ) -> <B as Backend>::FloatTensorPrimitive

One dimensional adaptive avg pooling. Read more
Source§

fn adaptive_avg_pool1d_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive

Backward pass for the adaptive avg pooling 1d operation.
Source§

fn max_pool1d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, ) -> <B as Backend>::FloatTensorPrimitive

One dimensional max pooling. Read more
Source§

fn max_pool1d_with_indices( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, ) -> MaxPool1dWithIndices<B>

One dimensional max pooling with indices. Read more
Source§

fn max_pool1d_with_indices_backward( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, output_grad: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> MaxPool1dBackward<B>

Backward pass for the max pooling 1d operation.
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> QTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn q_from_data( data: TensorData, _device: &NdArrayDevice, ) -> QuantizedTensor<Self>

Creates a new tensor from the data structure. Read more
Source§

fn quantize( tensor: FloatTensor<Self>, scheme: &QuantizationScheme, qparams: QuantizationParametersPrimitive<Self>, ) -> QuantizedTensor<Self>

Convert the tensor to a lower precision data type based on the quantization scheme and parameters.
Source§

fn dequantize(tensor: QuantizedTensor<Self>) -> FloatTensor<Self>

Convert the tensor back to a higher precision data type.
Source§

fn q_device(_tensor: &QuantizedTensor<Self>) -> NdArrayDevice

Gets the device of the tensor. Read more
Source§

fn q_to_device( tensor: QuantizedTensor<Self>, _device: &NdArrayDevice, ) -> QuantizedTensor<Self>

Moves the tensor to the given device. Read more
Source§

fn q_reshape( tensor: QuantizedTensor<Self>, shape: Shape, ) -> QuantizedTensor<Self>

Reshapes a tensor. Read more
Source§

async fn q_into_data(tensor: QuantizedTensor<Self>) -> TensorData

Converts the tensor to a data structure. Read more
Source§

fn q_swap_dims( tensor: QuantizedTensor<Self>, dim1: usize, dim2: usize, ) -> QuantizedTensor<Self>

Swaps two dimensions of a tensor. Read more
Source§

fn q_permute( tensor: QuantizedTensor<Self>, axes: &[usize], ) -> QuantizedTensor<Self>

Permutes the dimensions of a tensor. Read more
Source§

fn q_flip( tensor: QuantizedTensor<Self>, axes: &[usize], ) -> QuantizedTensor<Self>

Reverse the order of elements in a tensor along the given axes. Read more
Source§

fn q_gather( dim: usize, tensor: QuantizedTensor<Self>, indices: IntTensor<Self>, ) -> QuantizedTensor<Self>

Gather elements from a tensor. Read more
Source§

fn q_select( tensor: QuantizedTensor<Self>, dim: usize, indices: IntTensor<Self>, ) -> QuantizedTensor<Self>

Select tensor elements along the given dimension corresponding for the given indices. Read more
Source§

fn q_slice( tensor: QuantizedTensor<Self>, ranges: &[Range<usize>], ) -> QuantizedTensor<Self>

Select tensor elements corresponding for the given ranges. Read more
Source§

fn q_argmax(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>

Gets the indices of the maximum elements of a tensor along an axis. Read more
Source§

fn q_argmin(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>

Gets the indices of the minimum elements of a tensor along an axis. Read more
Source§

fn q_expand( tensor: QuantizedTensor<Self>, shape: Shape, ) -> QuantizedTensor<Self>

Broadcasts the tensor to the given shape.
Source§

fn quantize_dynamic( tensor: <B as Backend>::FloatTensorPrimitive, scheme: &QuantizationScheme, ) -> <B as Backend>::QuantizedTensorPrimitive

Dynamically convert the tensor to a lower precision data type based on the quantization scheme.
Source§

fn q_detach( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Detaches a tensor from the computation graph.
Source§

fn q_set_require_grad( tensor: <B as Backend>::QuantizedTensorPrimitive, _require_grad: bool, ) -> <B as Backend>::QuantizedTensorPrimitive

Sets the require_grad flag of a tensor.
Source§

fn q_is_require_grad(_tensor: &<B as Backend>::QuantizedTensorPrimitive) -> bool

Returns the require_grad flag of a tensor.
Source§

fn q_repeat_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Repeat the tensor along the given dimension. Read more
Source§

fn q_add( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Adds two tensors together. Read more
Source§

fn q_add_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Adds a scalar to a tensor. Read more
Source§

fn q_clamp_min( tensor: <B as Backend>::QuantizedTensorPrimitive, min: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Clamps a tensor under a minimum value. Read more
Source§

fn q_clamp_max( tensor: <B as Backend>::QuantizedTensorPrimitive, max: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Clamps a tensor over a maximum value. Read more
Source§

fn q_clamp( tensor: <B as Backend>::QuantizedTensorPrimitive, min: <B as Backend>::FloatElem, max: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Clamps a tensor between a minimum and maximum value. Read more
Source§

fn q_sub( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Subtracts two tensors. Read more
Source§

fn q_sub_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Subtracts a scalar from a tensor. Read more
Source§

fn q_mul( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Multiplies two tensors together element-wise.
Source§

fn q_mul_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Multiplies a tensor by a scalar. Read more
Source§

fn q_div( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Divides two tensors element-wise. Read more
Source§

fn q_div_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Divides a tensor by a scalar. Read more
Source§

fn q_remainder( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Computes the remainder of division between two tensors element-wise. Read more
Source§

fn q_remainder_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Computes the modulus of a tensor given a scalar. Read more
Source§

fn q_matmul( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Multiplies two tensors together using matrix multiplication. Read more
Source§

fn q_neg( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Negates a tensor element-wise.
Source§

fn q_recip( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Calculates the reciprocals element-wise
Source§

fn q_transpose( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Transposes a tensor. Read more
Source§

fn q_scatter( dim: usize, tensor: <B as Backend>::QuantizedTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, value: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Scatter elements into a tensor. Read more
Source§

fn q_select_assign( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, indices: <B as Backend>::IntTensorPrimitive, value: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Assign the selected elements along the given dimension corresponding for the given indices to the given value. Read more
Source§

fn q_slice_assign( tensor: <B as Backend>::QuantizedTensorPrimitive, ranges: &[Range<usize>], value: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Assign the selected elements corresponding for the given ranges to the given value. Read more
Source§

fn q_mask_where( tensor: <B as Backend>::QuantizedTensorPrimitive, mask: <B as Backend>::BoolTensorPrimitive, value: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Update the given tensor with the value tensor where the mask is true. Read more
Source§

fn q_mask_fill( tensor: <B as Backend>::QuantizedTensorPrimitive, mask: <B as Backend>::BoolTensorPrimitive, value: <B as Backend>::FloatElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Update the given tensor with the value where the mask is true. Read more
Source§

fn q_sum( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Sum of all elements in a tensor. Read more
Source§

fn q_sum_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Sum of all elements in a tensor along a dimension. Read more
Source§

fn q_prod( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Product of all elements in a tensor. Read more
Source§

fn q_prod_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Product of all elements in a tensor along a dimension. Read more
Source§

fn q_mean( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Mean of all elements in a tensor. Read more
Source§

fn q_mean_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Mean of all elements in a tensor along a dimension. Read more
Source§

fn q_exp( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with exponential values. Read more
Source§

fn q_log( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with natural logarithm values. Read more
Source§

fn q_log1p( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with logarithm values of (1 + Xi). Read more
Source§

fn q_powf( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Element-wise power with another tensor. Read more
Source§

fn q_powi( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Element-wise power with an IntTensor. Read more
Source§

fn q_powi_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::QuantizedTensorPrimitive

Element-wise power with an int scalar. Read more
Source§

fn q_powf_scalar( tensor: <B as Backend>::QuantizedTensorPrimitive, value: f32, ) -> <B as Backend>::QuantizedTensorPrimitive

Element-wise power with a float scalar. Read more
Source§

fn q_sqrt( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with square root values. Read more
Source§

fn q_abs( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with absolute values. Read more
Source§

fn q_cos( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with cosine values. Read more
Source§

fn q_sin( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with sine values. Read more
Source§

fn q_tan( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with tangent values. Read more
Source§

fn q_cosh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with hyperbolic cosine values. Read more
Source§

fn q_sinh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with hyperbolic sine values. Read more
Source§

fn q_tanh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with hyperbolic tangent values. Read more
Source§

fn q_erf( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with the error function values. Read more
Source§

fn q_cat( tensors: Vec<<B as Backend>::QuantizedTensorPrimitive>, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Concatenates tensors along a dimension. Read more
Source§

fn q_max( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the maximum element of a tensor. Read more
Source§

fn q_max_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the maximum elements of a tensor along an axis. Read more
Source§

fn q_max_dim_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the maximum elements of a tensor along an axis and their indices. Read more
Source§

fn q_min( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the minimum element of a tensor. Read more
Source§

fn q_min_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the minimum elements of a tensor along an axis. Read more
Source§

fn q_min_dim_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Gets the minimum elements of a tensor along an axis and their indices. Read more
Source§

fn q_max_abs( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the maximum element of a tensor. Read more
Source§

fn q_max_abs_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Gets the maximum elements of a tensor along an axis. Read more
Source§

fn q_narrow( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, start: usize, length: usize, ) -> <B as Backend>::QuantizedTensorPrimitive

Returns a new tensor with the given dimension narrowed to the given range. Read more
Source§

fn q_chunk( tensor: <B as Backend>::QuantizedTensorPrimitive, chunks: usize, dim: usize, ) -> Vec<<B as Backend>::QuantizedTensorPrimitive>

Split the tensor along the given dimension into chunks. Read more
Source§

fn q_split( tensor: <B as Backend>::QuantizedTensorPrimitive, split_size: usize, dim: usize, ) -> Vec<<B as Backend>::QuantizedTensorPrimitive>

Split the tensor along the given dimension into chunks of split_size. Read more
Source§

fn q_split_with_sizes( tensor: <B as Backend>::QuantizedTensorPrimitive, split_sizes: Vec<usize>, dim: usize, ) -> Vec<<B as Backend>::QuantizedTensorPrimitive>

Split the tensor along the given dimension into chunks with sizes in dim according to split_sizes. Read more
Source§

fn q_any( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the tensor evaluates to True. Read more
Source§

fn q_any_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if any element in the float tensor evaluates to True along a given dimension dim. Read more
Source§

fn q_all( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the tensor evaluate to True. Read more
Source§

fn q_all_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive

Tests if all elements in the tensor evaluate to True along a given dimension dim. Read more
Source§

fn q_sort( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::QuantizedTensorPrimitive

Sort the elements of the input tensor by value in along a given dimension. Read more
Source§

fn q_sort_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)

Sort the elements of the input tensor by value in along a given dimension. Read more
Source§

fn q_argsort( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive

Returns the indices that sort the elements of the input tensor by value along a given dimension. Read more
Source§

impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> TransactionOps<NdArray<E, I, Q>> for NdArray<E, I, Q>

Source§

fn tr_execute( transaction: TransactionPrimitive<B>, ) -> impl Future<Output = TransactionPrimitiveResult> + Send + 'static

Executes a transaction and return its result.
Source§

impl<E: Copy, I: Copy, Q: Copy> Copy for NdArray<E, I, Q>

Auto Trait Implementations§

§

impl<E, I, Q> Freeze for NdArray<E, I, Q>

§

impl<E, I, Q> RefUnwindSafe for NdArray<E, I, Q>

§

impl<E, I, Q> Send for NdArray<E, I, Q>
where E: Send, I: Send, Q: Send,

§

impl<E, I, Q> Sync for NdArray<E, I, Q>
where E: Sync, I: Sync, Q: Sync,

§

impl<E, I, Q> Unpin for NdArray<E, I, Q>
where E: Unpin, I: Unpin, Q: Unpin,

§

impl<E, I, Q> UnwindSafe for NdArray<E, I, Q>
where E: UnwindSafe, I: UnwindSafe, Q: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V