Struct burn_ndarray::NdArray
source · pub struct NdArray<E = f32> { /* private fields */ }Expand description
Tensor backend that uses the ndarray crate for executing tensor operations.
This backend is compatible with CPUs and can be compiled for almost any platform, including
wasm, arm, and x86.
Trait Implementations§
source§impl<E: FloatNdArrayElement> ActivationOps<NdArray<E>> for NdArray<E>
impl<E: FloatNdArrayElement> ActivationOps<NdArray<E>> for NdArray<E>
source§fn relu<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn relu<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Applies the ReLU activation function. Read more
source§fn relu_backward<const D: usize>(
output: <B as Backend>::TensorPrimitive<D>,
grad: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<D>
fn relu_backward<const D: usize>( output: <B as Backend>::TensorPrimitive<D>, grad: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<D>
Applies the ReLU activation function backward. Read more
source§fn gelu<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<D>
fn gelu<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<D>
Applies the Gelu activation function. Read more
source§fn gelu_backward<const D: usize>(
x: <B as Backend>::TensorPrimitive<D>,
grad: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<D>
fn gelu_backward<const D: usize>( x: <B as Backend>::TensorPrimitive<D>, grad: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<D>
Applies the Gelu activation function backward. Read more
source§impl<E: FloatNdArrayElement> Backend for NdArray<E>
impl<E: FloatNdArrayElement> Backend for NdArray<E>
§type Device = NdArrayDevice
type Device = NdArrayDevice
Device type.
§type FullPrecisionElem = f32
type FullPrecisionElem = f32
Full precision float element type.
§type FullPrecisionBackend = NdArray
type FullPrecisionBackend = NdArray
Pointer to another backend that have a full precision float element type
§type TensorPrimitive<const D: usize> = NdArrayTensor<E, D>
type TensorPrimitive<const D: usize> = NdArrayTensor<E, D>
Tensor primitive to be used for all float operations.
§type IntTensorPrimitive<const D: usize> = NdArrayTensor<i64, D>
type IntTensorPrimitive<const D: usize> = NdArrayTensor<i64, D>
Tensor primitive to be used for all int operations.
§type BoolTensorPrimitive<const D: usize> = NdArrayTensor<bool, D>
type BoolTensorPrimitive<const D: usize> = NdArrayTensor<bool, D>
Tensor primitive to be used for all bool operations.
source§fn ad_enabled() -> bool
fn ad_enabled() -> bool
If autodiff is enabled.
source§impl<E: FloatNdArrayElement> BoolTensorOps<NdArray<E>> for NdArray<E>
impl<E: FloatNdArrayElement> BoolTensorOps<NdArray<E>> for NdArray<E>
source§fn bool_from_data<const D: usize>(
data: Data<bool, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<bool, D>
fn bool_from_data<const D: usize>( data: Data<bool, D>, _device: &NdArrayDevice ) -> NdArrayTensor<bool, D>
Creates a tensor from the data structure. Read more
source§fn bool_shape<const D: usize>(
tensor: &<NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> Shape<D>
fn bool_shape<const D: usize>( tensor: &<NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> Shape<D>
Returns the shape of the tensor. Read more
source§fn bool_into_data<const D: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> Reader<Data<bool, D>>
fn bool_into_data<const D: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> Reader<Data<bool, D>>
Converts the tensor to a data structure. Read more
source§fn bool_to_device<const D: usize>(
tensor: NdArrayTensor<bool, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<bool, D>
fn bool_to_device<const D: usize>( tensor: NdArrayTensor<bool, D>, _device: &NdArrayDevice ) -> NdArrayTensor<bool, D>
Moves the tensor to the device.
source§fn bool_reshape<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<bool, D1>,
shape: Shape<D2>
) -> NdArrayTensor<bool, D2>
fn bool_reshape<const D1: usize, const D2: usize>( tensor: NdArrayTensor<bool, D1>, shape: Shape<D2> ) -> NdArrayTensor<bool, D2>
Reshapes the tensor. Read more
source§fn bool_slice<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<bool, D1>,
ranges: [Range<usize>; D2]
) -> NdArrayTensor<bool, D1>
fn bool_slice<const D1: usize, const D2: usize>( tensor: NdArrayTensor<bool, D1>, ranges: [Range<usize>; D2] ) -> NdArrayTensor<bool, D1>
Gets the values from the tensor for the given ranges. Read more
source§fn bool_into_int<const D: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> NdArrayTensor<i64, D>
fn bool_into_int<const D: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> NdArrayTensor<i64, D>
Converts bool tensor to int tensor. Read more
source§fn bool_device<const D: usize>(
_tensor: &<NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> <NdArray<E> as Backend>::Device
fn bool_device<const D: usize>( _tensor: &<NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> <NdArray<E> as Backend>::Device
Gets the device of the tensor. Read more
source§fn bool_empty<const D: usize>(
shape: Shape<D>,
_device: &<NdArray<E> as Backend>::Device
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
fn bool_empty<const D: usize>( shape: Shape<D>, _device: &<NdArray<E> as Backend>::Device ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
Creates a new bool tensor. Read more
source§fn bool_slice_assign<const D1: usize, const D2: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D1>,
ranges: [Range<usize>; D2],
value: <NdArray<E> as Backend>::BoolTensorPrimitive<D1>
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D1>
fn bool_slice_assign<const D1: usize, const D2: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D1>, ranges: [Range<usize>; D2], value: <NdArray<E> as Backend>::BoolTensorPrimitive<D1> ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D1>
Sets the values in the tensor for the given ranges. Read more
source§fn bool_cat<const D: usize>(
tensors: Vec<<NdArray<E> as Backend>::BoolTensorPrimitive<D>>,
dim: usize
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
fn bool_cat<const D: usize>( tensors: Vec<<NdArray<E> as Backend>::BoolTensorPrimitive<D>>, dim: usize ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
Concatenates the tensors along the given dimension. Read more
source§fn bool_equal<const D: usize>(
lhs: <NdArray<E> as Backend>::BoolTensorPrimitive<D>,
rhs: <NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
fn bool_equal<const D: usize>( lhs: <NdArray<E> as Backend>::BoolTensorPrimitive<D>, rhs: <NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
Equates the two tensors. Read more
source§fn bool_not<const D: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
fn bool_not<const D: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
Inverses boolean values. Read more
source§fn bool_into_float<const D: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>
) -> <NdArray<E> as Backend>::TensorPrimitive<D>
fn bool_into_float<const D: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D> ) -> <NdArray<E> as Backend>::TensorPrimitive<D>
Converts bool tensor to float tensor. Read more
source§fn bool_swap_dims<const D: usize>(
tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>,
dim1: usize,
dim2: usize
) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
fn bool_swap_dims<const D: usize>( tensor: <NdArray<E> as Backend>::BoolTensorPrimitive<D>, dim1: usize, dim2: usize ) -> <NdArray<E> as Backend>::BoolTensorPrimitive<D>
Swaps two dimensions of a bool tensor. Read more
source§fn bool_to_data<const D: usize>(
tensor: &<B as Backend>::BoolTensorPrimitive<D>
) -> Reader<Data<bool, D>>
fn bool_to_data<const D: usize>( tensor: &<B as Backend>::BoolTensorPrimitive<D> ) -> Reader<Data<bool, D>>
Gets the data from the tensor. Read more
source§fn bool_repeat<const D: usize>(
tensor: <B as Backend>::BoolTensorPrimitive<D>,
dim: usize,
times: usize
) -> <B as Backend>::BoolTensorPrimitive<D>
fn bool_repeat<const D: usize>( tensor: <B as Backend>::BoolTensorPrimitive<D>, dim: usize, times: usize ) -> <B as Backend>::BoolTensorPrimitive<D>
Repeats one dimension of the tensor a given number of times along that dimension. Read more
source§fn bool_transpose<const D: usize>(
tensor: <B as Backend>::BoolTensorPrimitive<D>
) -> <B as Backend>::BoolTensorPrimitive<D>
fn bool_transpose<const D: usize>( tensor: <B as Backend>::BoolTensorPrimitive<D> ) -> <B as Backend>::BoolTensorPrimitive<D>
Transposes a bool tensor. Read more
source§impl<E: FloatNdArrayElement> IntTensorOps<NdArray<E>> for NdArray<E>
impl<E: FloatNdArrayElement> IntTensorOps<NdArray<E>> for NdArray<E>
source§fn int_from_data<const D: usize>(
data: Data<i64, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<i64, D>
fn int_from_data<const D: usize>( data: Data<i64, D>, _device: &NdArrayDevice ) -> NdArrayTensor<i64, D>
Creates a tensor from the data structure. Read more
source§fn int_shape<const D: usize>(tensor: &NdArrayTensor<i64, D>) -> Shape<D>
fn int_shape<const D: usize>(tensor: &NdArrayTensor<i64, D>) -> Shape<D>
Returns the shape of the tensor. Read more
source§fn int_into_data<const D: usize>(
tensor: NdArrayTensor<i64, D>
) -> Reader<Data<i64, D>>
fn int_into_data<const D: usize>( tensor: NdArrayTensor<i64, D> ) -> Reader<Data<i64, D>>
Converts the tensor to a data structure. Read more
source§fn int_to_device<const D: usize>(
tensor: NdArrayTensor<i64, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<i64, D>
fn int_to_device<const D: usize>( tensor: NdArrayTensor<i64, D>, _device: &NdArrayDevice ) -> NdArrayTensor<i64, D>
Moves the tensor to the given device.
source§fn int_reshape<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<i64, D1>,
shape: Shape<D2>
) -> NdArrayTensor<i64, D2>
fn int_reshape<const D1: usize, const D2: usize>( tensor: NdArrayTensor<i64, D1>, shape: Shape<D2> ) -> NdArrayTensor<i64, D2>
Reshapes the tensor. Read more
source§fn int_slice<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<i64, D1>,
ranges: [Range<usize>; D2]
) -> NdArrayTensor<i64, D1>
fn int_slice<const D1: usize, const D2: usize>( tensor: NdArrayTensor<i64, D1>, ranges: [Range<usize>; D2] ) -> NdArrayTensor<i64, D1>
Gets the element at the given indices. Read more
source§fn int_device<const D: usize>(
_tensor: &NdArrayTensor<i64, D>
) -> <NdArray<E> as Backend>::Device
fn int_device<const D: usize>( _tensor: &NdArrayTensor<i64, D> ) -> <NdArray<E> as Backend>::Device
Gets the device of the tensor. Read more
source§fn int_empty<const D: usize>(
shape: Shape<D>,
_device: &<NdArray<E> as Backend>::Device
) -> NdArrayTensor<i64, D>
fn int_empty<const D: usize>( shape: Shape<D>, _device: &<NdArray<E> as Backend>::Device ) -> NdArrayTensor<i64, D>
Creates a new int tensor. Read more
source§fn int_mask_where<const D: usize>(
tensor: NdArrayTensor<i64, D>,
mask: NdArrayTensor<bool, D>,
source: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_mask_where<const D: usize>( tensor: NdArrayTensor<i64, D>, mask: NdArrayTensor<bool, D>, source: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Fills the tensor with values from the source tensor if the mask is true at the given
indices. Read more
source§fn int_mask_fill<const D: usize>(
tensor: NdArrayTensor<i64, D>,
mask: NdArrayTensor<bool, D>,
value: i64
) -> NdArrayTensor<i64, D>
fn int_mask_fill<const D: usize>( tensor: NdArrayTensor<i64, D>, mask: NdArrayTensor<bool, D>, value: i64 ) -> NdArrayTensor<i64, D>
Fills the tensor with the given value if the mask is true at the given indices. Read more
source§fn int_slice_assign<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<i64, D1>,
ranges: [Range<usize>; D2],
value: NdArrayTensor<i64, D1>
) -> NdArrayTensor<i64, D1>
fn int_slice_assign<const D1: usize, const D2: usize>( tensor: NdArrayTensor<i64, D1>, ranges: [Range<usize>; D2], value: NdArrayTensor<i64, D1> ) -> NdArrayTensor<i64, D1>
Sets the element at the given indices. Read more
source§fn int_cat<const D: usize>(
tensors: Vec<NdArrayTensor<i64, D>>,
dim: usize
) -> NdArrayTensor<i64, D>
fn int_cat<const D: usize>( tensors: Vec<NdArrayTensor<i64, D>>, dim: usize ) -> NdArrayTensor<i64, D>
Concatenates the given tensors along the given dimension. Read more
source§fn int_equal<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<bool, D>
fn int_equal<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<bool, D>
Elementwise equality comparison. Read more
source§fn int_equal_elem<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<bool, D>
fn int_equal_elem<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<bool, D>
Elementwise equality comparison with a scalar. Read more
source§fn int_greater<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<bool, D>
fn int_greater<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<bool, D>
Elementwise greater than comparison. Read more
source§fn int_greater_elem<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<bool, D>
fn int_greater_elem<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<bool, D>
Elementwise greater than comparison with a scalar. Read more
source§fn int_greater_equal<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<bool, D>
fn int_greater_equal<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<bool, D>
Elementwise greater than or equal comparison. Read more
source§fn int_greater_equal_elem<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<bool, D>
fn int_greater_equal_elem<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<bool, D>
Elementwise greater than or equal comparison with a scalar. Read more
source§fn int_lower<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<bool, D>
fn int_lower<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<bool, D>
Elementwise less than comparison. Read more
source§fn int_lower_elem<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<bool, D>
fn int_lower_elem<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<bool, D>
Elementwise less than comparison with a scalar. Read more
source§fn int_lower_equal<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<bool, D>
fn int_lower_equal<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<bool, D>
Elementwise less than or equal comparison. Read more
source§fn int_lower_equal_elem<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<bool, D>
fn int_lower_equal_elem<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<bool, D>
Elementwise less than or equal comparison with a scalar. Read more
source§fn int_add<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_add<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Elementwise addition. Read more
source§fn int_add_scalar<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<i64, D>
fn int_add_scalar<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<i64, D>
Elementwise addition with a scalar. Read more
source§fn int_sub<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_sub<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Elementwise subtraction. Read more
source§fn int_sub_scalar<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<i64, D>
fn int_sub_scalar<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<i64, D>
Elementwise subtraction with a scalar. Read more
source§fn int_mul<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_mul<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Elementwise multiplication. Read more
source§fn int_mul_scalar<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<i64, D>
fn int_mul_scalar<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<i64, D>
Elementwise multiplication with a scalar. Read more
source§fn int_div<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_div<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Elementwise division. Read more
source§fn int_div_scalar<const D: usize>(
lhs: NdArrayTensor<i64, D>,
rhs: i64
) -> NdArrayTensor<i64, D>
fn int_div_scalar<const D: usize>( lhs: NdArrayTensor<i64, D>, rhs: i64 ) -> NdArrayTensor<i64, D>
Elementwise division with a scalar. Read more
source§fn int_neg<const D: usize>(
tensor: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_neg<const D: usize>( tensor: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Elementwise negation. Read more
source§fn int_zeros<const D: usize>(
shape: Shape<D>,
device: &<NdArray<E> as Backend>::Device
) -> NdArrayTensor<i64, D>
fn int_zeros<const D: usize>( shape: Shape<D>, device: &<NdArray<E> as Backend>::Device ) -> NdArrayTensor<i64, D>
Creates a tensor of zeros. Read more
source§fn int_ones<const D: usize>(
shape: Shape<D>,
device: &<NdArray<E> as Backend>::Device
) -> NdArrayTensor<i64, D>
fn int_ones<const D: usize>( shape: Shape<D>, device: &<NdArray<E> as Backend>::Device ) -> NdArrayTensor<i64, D>
Creates a tensor of ones. Read more
source§fn int_full<const D: usize>(
shape: Shape<D>,
fill_value: i64,
device: &<NdArray<E> as Backend>::Device
) -> NdArrayTensor<i64, D>
fn int_full<const D: usize>( shape: Shape<D>, fill_value: i64, device: &<NdArray<E> as Backend>::Device ) -> NdArrayTensor<i64, D>
Creates a tensor filled with given value. Read more
source§fn int_sum<const D: usize>(
tensor: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, 1>
fn int_sum<const D: usize>( tensor: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, 1>
Sums all elements in the tensor. Read more
source§fn int_sum_dim<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn int_sum_dim<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize ) -> NdArrayTensor<i64, D>
Sums all elements in the tensor along a dimension. Read more
source§fn int_mean<const D: usize>(
tensor: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, 1>
fn int_mean<const D: usize>( tensor: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, 1>
Computes the mean of all elements in the tensor. Read more
source§fn int_mean_dim<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn int_mean_dim<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize ) -> NdArrayTensor<i64, D>
Computes the mean of all elements in the tensor along a dimension. Read more
source§fn int_gather<const D: usize>(
dim: usize,
tensor: NdArrayTensor<i64, D>,
indices: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_gather<const D: usize>( dim: usize, tensor: NdArrayTensor<i64, D>, indices: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Gather elements from the tensor at the given indices. Read more
source§fn int_scatter<const D: usize>(
dim: usize,
tensor: NdArrayTensor<i64, D>,
indices: NdArrayTensor<i64, D>,
value: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_scatter<const D: usize>( dim: usize, tensor: NdArrayTensor<i64, D>, indices: NdArrayTensor<i64, D>, value: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Scatter a given value to the tensor at the given indices. Read more
source§fn int_select<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>
) -> NdArrayTensor<i64, D>
fn int_select<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize, indices: NdArrayTensor<i64, 1> ) -> NdArrayTensor<i64, D>
Select tensor elements along the given dimension corresponding to the given indices. Read more
source§fn int_select_assign<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>,
value: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_select_assign<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize, indices: NdArrayTensor<i64, 1>, value: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Assign the selected elements along the given dimension corresponding to the given indices
to the given value. Read more
source§fn int_argmax<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn int_argmax<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize ) -> NdArrayTensor<i64, D>
Gets the indices of the maximum elements along a dimension. Read more
source§fn int_argmin<const D: usize>(
tensor: NdArrayTensor<i64, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn int_argmin<const D: usize>( tensor: NdArrayTensor<i64, D>, dim: usize ) -> NdArrayTensor<i64, D>
Gets the indices of the minimum elements along a dimension. Read more
source§fn int_clamp_min<const D: usize>(
tensor: NdArrayTensor<i64, D>,
min: i64
) -> NdArrayTensor<i64, D>
fn int_clamp_min<const D: usize>( tensor: NdArrayTensor<i64, D>, min: i64 ) -> NdArrayTensor<i64, D>
Clamps a tensor under a minimum value. Read more
source§fn int_clamp_max<const D: usize>(
tensor: NdArrayTensor<i64, D>,
max: i64
) -> NdArrayTensor<i64, D>
fn int_clamp_max<const D: usize>( tensor: NdArrayTensor<i64, D>, max: i64 ) -> NdArrayTensor<i64, D>
Clamps a tensor over a maximum value. Read more
source§fn int_clamp<const D: usize>(
tensor: NdArrayTensor<i64, D>,
min: i64,
max: i64
) -> NdArrayTensor<i64, D>
fn int_clamp<const D: usize>( tensor: NdArrayTensor<i64, D>, min: i64, max: i64 ) -> NdArrayTensor<i64, D>
Clamps a tensor between a minimum and maximum value. Read more
source§fn int_abs<const D: usize>(
tensor: NdArrayTensor<i64, D>
) -> NdArrayTensor<i64, D>
fn int_abs<const D: usize>( tensor: NdArrayTensor<i64, D> ) -> NdArrayTensor<i64, D>
Returns a new tensor with absolute values. Read more
source§fn int_into_float<const D: usize>(
tensor: <NdArray<E> as Backend>::IntTensorPrimitive<D>
) -> <NdArray<E> as Backend>::TensorPrimitive<D>
fn int_into_float<const D: usize>( tensor: <NdArray<E> as Backend>::IntTensorPrimitive<D> ) -> <NdArray<E> as Backend>::TensorPrimitive<D>
Converts int tensor to float tensor. Read more
source§fn int_swap_dims<const D: usize>(
tensor: <NdArray<E> as Backend>::IntTensorPrimitive<D>,
dim1: usize,
dim2: usize
) -> <NdArray<E> as Backend>::IntTensorPrimitive<D>
fn int_swap_dims<const D: usize>( tensor: <NdArray<E> as Backend>::IntTensorPrimitive<D>, dim1: usize, dim2: usize ) -> <NdArray<E> as Backend>::IntTensorPrimitive<D>
Swaps two dimensions of an int tensor. Read more
source§fn int_to_data<const D: usize>(
tensor: &<B as Backend>::IntTensorPrimitive<D>
) -> Reader<Data<<B as Backend>::IntElem, D>>
fn int_to_data<const D: usize>( tensor: &<B as Backend>::IntTensorPrimitive<D> ) -> Reader<Data<<B as Backend>::IntElem, D>>
Gets the data from the tensor. Read more
source§fn int_repeat<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>,
dim: usize,
times: usize
) -> <B as Backend>::IntTensorPrimitive<D>
fn int_repeat<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D>, dim: usize, times: usize ) -> <B as Backend>::IntTensorPrimitive<D>
Repeats the tensor along the given dimension the given number of times. Read more
source§fn int_max<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>
) -> <B as Backend>::IntTensorPrimitive<1>
fn int_max<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D> ) -> <B as Backend>::IntTensorPrimitive<1>
Gets the maximum element in the tensor. Read more
source§fn int_max_dim<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>,
dim: usize
) -> <B as Backend>::IntTensorPrimitive<D>
fn int_max_dim<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D>, dim: usize ) -> <B as Backend>::IntTensorPrimitive<D>
Gets the maximum element in the tensor along a dimension. Read more
source§fn int_max_dim_with_indices<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>,
dim: usize
) -> (<B as Backend>::IntTensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
fn int_max_dim_with_indices<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D>, dim: usize ) -> (<B as Backend>::IntTensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
Gets the maximum elements and corresponding indices along a dimension. Read more
source§fn int_min<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>
) -> <B as Backend>::IntTensorPrimitive<1>
fn int_min<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D> ) -> <B as Backend>::IntTensorPrimitive<1>
Gets the minimum element in the tensor. Read more
source§fn int_min_dim<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>,
dim: usize
) -> <B as Backend>::IntTensorPrimitive<D>
fn int_min_dim<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D>, dim: usize ) -> <B as Backend>::IntTensorPrimitive<D>
Gets the minimum elements in the tensor along a dimension. Read more
source§fn int_min_dim_with_indices<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>,
dim: usize
) -> (<B as Backend>::IntTensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
fn int_min_dim_with_indices<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D>, dim: usize ) -> (<B as Backend>::IntTensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
Gets the minimum elements and corresponding indices along a dimension. Read more
source§fn int_transpose<const D: usize>(
tensor: <B as Backend>::IntTensorPrimitive<D>
) -> <B as Backend>::IntTensorPrimitive<D>
fn int_transpose<const D: usize>( tensor: <B as Backend>::IntTensorPrimitive<D> ) -> <B as Backend>::IntTensorPrimitive<D>
Transposes an int tensor. Read more
source§impl<E: FloatNdArrayElement> ModuleOps<NdArray<E>> for NdArray<E>
impl<E: FloatNdArrayElement> ModuleOps<NdArray<E>> for NdArray<E>
source§fn conv2d(
x: NdArrayTensor<E, 4>,
weight: NdArrayTensor<E, 4>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvOptions<2>
) -> NdArrayTensor<E, 4>
fn conv2d( x: NdArrayTensor<E, 4>, weight: NdArrayTensor<E, 4>, bias: Option<NdArrayTensor<E, 1>>, options: ConvOptions<2> ) -> NdArrayTensor<E, 4>
Two dimensional convolution. Read more
source§fn conv_transpose2d(
x: NdArrayTensor<E, 4>,
weight: NdArrayTensor<E, 4>,
bias: Option<NdArrayTensor<E, 1>>,
options: ConvTransposeOptions<2>
) -> NdArrayTensor<E, 4>
fn conv_transpose2d( x: NdArrayTensor<E, 4>, weight: NdArrayTensor<E, 4>, bias: Option<NdArrayTensor<E, 1>>, options: ConvTransposeOptions<2> ) -> NdArrayTensor<E, 4>
Two dimensional transposed convolution. Read more
source§fn avg_pool2d(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool
) -> NdArrayTensor<E, 4>
fn avg_pool2d( x: NdArrayTensor<E, 4>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool ) -> NdArrayTensor<E, 4>
Two dimensional avg pooling. Read more
source§fn avg_pool2d_backward(
x: NdArrayTensor<E, 4>,
grad: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool
) -> NdArrayTensor<E, 4>
fn avg_pool2d_backward( x: NdArrayTensor<E, 4>, grad: NdArrayTensor<E, 4>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool ) -> NdArrayTensor<E, 4>
Backward pass for the avg pooling 2d operation.
source§fn max_pool2d(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2]
) -> NdArrayTensor<E, 4>
fn max_pool2d( x: NdArrayTensor<E, 4>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2] ) -> NdArrayTensor<E, 4>
Two dimensional max pooling. Read more
source§fn max_pool2d_with_indices(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2]
) -> MaxPool2dWithIndices<NdArray<E>>
fn max_pool2d_with_indices( x: NdArrayTensor<E, 4>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2] ) -> MaxPool2dWithIndices<NdArray<E>>
Two dimensional max pooling with indices. Read more
source§fn max_pool2d_with_indices_backward(
x: NdArrayTensor<E, 4>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
output_grad: NdArrayTensor<E, 4>,
indices: NdArrayTensor<i64, 4>
) -> MaxPool2dBackward<NdArray<E>>
fn max_pool2d_with_indices_backward( x: NdArrayTensor<E, 4>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], output_grad: NdArrayTensor<E, 4>, indices: NdArrayTensor<i64, 4> ) -> MaxPool2dBackward<NdArray<E>>
Backward pass for the max pooling 2d operation.
source§fn adaptive_avg_pool2d(
x: NdArrayTensor<E, 4>,
output_size: [usize; 2]
) -> NdArrayTensor<E, 4>
fn adaptive_avg_pool2d( x: NdArrayTensor<E, 4>, output_size: [usize; 2] ) -> NdArrayTensor<E, 4>
Two dimensional adaptive avg pooling. Read more
source§fn adaptive_avg_pool2d_backward(
x: NdArrayTensor<E, 4>,
grad: NdArrayTensor<E, 4>
) -> NdArrayTensor<E, 4>
fn adaptive_avg_pool2d_backward( x: NdArrayTensor<E, 4>, grad: NdArrayTensor<E, 4> ) -> NdArrayTensor<E, 4>
Backward pass for the adaptive avg pooling 2d operation.
source§fn embedding(
weights: <B as Backend>::TensorPrimitive<2>,
indices: <B as Backend>::IntTensorPrimitive<2>
) -> <B as Backend>::TensorPrimitive<3>
fn embedding( weights: <B as Backend>::TensorPrimitive<2>, indices: <B as Backend>::IntTensorPrimitive<2> ) -> <B as Backend>::TensorPrimitive<3>
Embedding operation. Read more
source§fn embedding_backward(
weights: <B as Backend>::TensorPrimitive<2>,
output_grad: <B as Backend>::TensorPrimitive<3>,
indices: <B as Backend>::IntTensorPrimitive<2>
) -> <B as Backend>::TensorPrimitive<2>
fn embedding_backward( weights: <B as Backend>::TensorPrimitive<2>, output_grad: <B as Backend>::TensorPrimitive<3>, indices: <B as Backend>::IntTensorPrimitive<2> ) -> <B as Backend>::TensorPrimitive<2>
Embedding backward operation. Read more
source§fn conv1d(
x: <B as Backend>::TensorPrimitive<3>,
weight: <B as Backend>::TensorPrimitive<3>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
options: ConvOptions<1>
) -> <B as Backend>::TensorPrimitive<3>
fn conv1d( x: <B as Backend>::TensorPrimitive<3>, weight: <B as Backend>::TensorPrimitive<3>, bias: Option<<B as Backend>::TensorPrimitive<1>>, options: ConvOptions<1> ) -> <B as Backend>::TensorPrimitive<3>
One dimensional convolution. Read more
source§fn conv1d_backward(
x: <B as Backend>::TensorPrimitive<3>,
weight: <B as Backend>::TensorPrimitive<3>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
output_grad: <B as Backend>::TensorPrimitive<3>,
options: ConvOptions<1>
) -> Conv1dBackward<B>
fn conv1d_backward( x: <B as Backend>::TensorPrimitive<3>, weight: <B as Backend>::TensorPrimitive<3>, bias: Option<<B as Backend>::TensorPrimitive<1>>, output_grad: <B as Backend>::TensorPrimitive<3>, options: ConvOptions<1> ) -> Conv1dBackward<B>
Backward pass for the conv1d operation.
source§fn conv2d_backward(
x: <B as Backend>::TensorPrimitive<4>,
weight: <B as Backend>::TensorPrimitive<4>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
output_grad: <B as Backend>::TensorPrimitive<4>,
options: ConvOptions<2>
) -> Conv2dBackward<B>
fn conv2d_backward( x: <B as Backend>::TensorPrimitive<4>, weight: <B as Backend>::TensorPrimitive<4>, bias: Option<<B as Backend>::TensorPrimitive<1>>, output_grad: <B as Backend>::TensorPrimitive<4>, options: ConvOptions<2> ) -> Conv2dBackward<B>
Backward pass for the conv2d operation.
source§fn conv_transpose1d(
x: <B as Backend>::TensorPrimitive<3>,
weight: <B as Backend>::TensorPrimitive<3>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
options: ConvTransposeOptions<1>
) -> <B as Backend>::TensorPrimitive<3>
fn conv_transpose1d( x: <B as Backend>::TensorPrimitive<3>, weight: <B as Backend>::TensorPrimitive<3>, bias: Option<<B as Backend>::TensorPrimitive<1>>, options: ConvTransposeOptions<1> ) -> <B as Backend>::TensorPrimitive<3>
One dimensional transposed convolution. Read more
source§fn conv_transpose1d_backward(
x: <B as Backend>::TensorPrimitive<3>,
weight: <B as Backend>::TensorPrimitive<3>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
output_grad: <B as Backend>::TensorPrimitive<3>,
options: ConvTransposeOptions<1>
) -> Conv1dBackward<B>
fn conv_transpose1d_backward( x: <B as Backend>::TensorPrimitive<3>, weight: <B as Backend>::TensorPrimitive<3>, bias: Option<<B as Backend>::TensorPrimitive<1>>, output_grad: <B as Backend>::TensorPrimitive<3>, options: ConvTransposeOptions<1> ) -> Conv1dBackward<B>
Backward pass for the conv transpose 1d operation.
source§fn conv_transpose2d_backward(
x: <B as Backend>::TensorPrimitive<4>,
weight: <B as Backend>::TensorPrimitive<4>,
bias: Option<<B as Backend>::TensorPrimitive<1>>,
output_grad: <B as Backend>::TensorPrimitive<4>,
options: ConvTransposeOptions<2>
) -> Conv2dBackward<B>
fn conv_transpose2d_backward( x: <B as Backend>::TensorPrimitive<4>, weight: <B as Backend>::TensorPrimitive<4>, bias: Option<<B as Backend>::TensorPrimitive<1>>, output_grad: <B as Backend>::TensorPrimitive<4>, options: ConvTransposeOptions<2> ) -> Conv2dBackward<B>
Backward pass for the conv transpose 2d operation.
source§fn unfold4d(
x: <B as Backend>::TensorPrimitive<4>,
kernel_size: [usize; 2],
options: UnfoldOptions
) -> <B as Backend>::TensorPrimitive<3>
fn unfold4d( x: <B as Backend>::TensorPrimitive<4>, kernel_size: [usize; 2], options: UnfoldOptions ) -> <B as Backend>::TensorPrimitive<3>
Four-dimensional unfolding. Read more
source§fn avg_pool1d(
x: <B as Backend>::TensorPrimitive<3>,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool
) -> <B as Backend>::TensorPrimitive<3>
fn avg_pool1d( x: <B as Backend>::TensorPrimitive<3>, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool ) -> <B as Backend>::TensorPrimitive<3>
One dimensional avg pooling. Read more
source§fn avg_pool1d_backward(
x: <B as Backend>::TensorPrimitive<3>,
grad: <B as Backend>::TensorPrimitive<3>,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool
) -> <B as Backend>::TensorPrimitive<3>
fn avg_pool1d_backward( x: <B as Backend>::TensorPrimitive<3>, grad: <B as Backend>::TensorPrimitive<3>, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool ) -> <B as Backend>::TensorPrimitive<3>
Backward pass for the avg pooling 1d operation.
source§fn adaptive_avg_pool1d(
x: <B as Backend>::TensorPrimitive<3>,
output_size: usize
) -> <B as Backend>::TensorPrimitive<3>
fn adaptive_avg_pool1d( x: <B as Backend>::TensorPrimitive<3>, output_size: usize ) -> <B as Backend>::TensorPrimitive<3>
One dimensional adaptive avg pooling. Read more
source§fn adaptive_avg_pool1d_backward(
x: <B as Backend>::TensorPrimitive<3>,
grad: <B as Backend>::TensorPrimitive<3>
) -> <B as Backend>::TensorPrimitive<3>
fn adaptive_avg_pool1d_backward( x: <B as Backend>::TensorPrimitive<3>, grad: <B as Backend>::TensorPrimitive<3> ) -> <B as Backend>::TensorPrimitive<3>
Backward pass for the adaptive avg pooling 1d operation.
source§fn max_pool1d(
x: <B as Backend>::TensorPrimitive<3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize
) -> <B as Backend>::TensorPrimitive<3>
fn max_pool1d( x: <B as Backend>::TensorPrimitive<3>, kernel_size: usize, stride: usize, padding: usize, dilation: usize ) -> <B as Backend>::TensorPrimitive<3>
One dimensional max pooling. Read more
source§fn max_pool1d_with_indices(
x: <B as Backend>::TensorPrimitive<3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize
) -> MaxPool1dWithIndices<B>
fn max_pool1d_with_indices( x: <B as Backend>::TensorPrimitive<3>, kernel_size: usize, stride: usize, padding: usize, dilation: usize ) -> MaxPool1dWithIndices<B>
One dimensional max pooling with indices. Read more
source§fn max_pool1d_with_indices_backward(
x: <B as Backend>::TensorPrimitive<3>,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
output_grad: <B as Backend>::TensorPrimitive<3>,
indices: <B as Backend>::IntTensorPrimitive<3>
) -> MaxPool1dBackward<B>
fn max_pool1d_with_indices_backward( x: <B as Backend>::TensorPrimitive<3>, kernel_size: usize, stride: usize, padding: usize, dilation: usize, output_grad: <B as Backend>::TensorPrimitive<3>, indices: <B as Backend>::IntTensorPrimitive<3> ) -> MaxPool1dBackward<B>
Backward pass for the max pooling 1d operation.
source§impl<E: FloatNdArrayElement> TensorOps<NdArray<E>> for NdArray<E>
impl<E: FloatNdArrayElement> TensorOps<NdArray<E>> for NdArray<E>
source§fn from_data<const D: usize>(
data: Data<E, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<E, D>
fn from_data<const D: usize>( data: Data<E, D>, _device: &NdArrayDevice ) -> NdArrayTensor<E, D>
Creates a new tensor from the data structure. Read more
source§fn random<const D: usize>(
shape: Shape<D>,
distribution: Distribution,
device: &NdArrayDevice
) -> NdArrayTensor<E, D>
fn random<const D: usize>( shape: Shape<D>, distribution: Distribution, device: &NdArrayDevice ) -> NdArrayTensor<E, D>
Creates a new tensor with random values. Read more
source§fn shape<const D: usize>(tensor: &NdArrayTensor<E, D>) -> Shape<D>
fn shape<const D: usize>(tensor: &NdArrayTensor<E, D>) -> Shape<D>
Gets the shape of the tensor. Read more
source§fn into_data<const D: usize>(
tensor: NdArrayTensor<E, D>
) -> Reader<Data<<NdArray<E> as Backend>::FloatElem, D>>
fn into_data<const D: usize>( tensor: NdArrayTensor<E, D> ) -> Reader<Data<<NdArray<E> as Backend>::FloatElem, D>>
Converts the tensor to a data structure. Read more
source§fn device<const D: usize>(_tensor: &NdArrayTensor<E, D>) -> NdArrayDevice
fn device<const D: usize>(_tensor: &NdArrayTensor<E, D>) -> NdArrayDevice
Gets the device of the tensor. Read more
source§fn to_device<const D: usize>(
tensor: NdArrayTensor<E, D>,
_device: &NdArrayDevice
) -> NdArrayTensor<E, D>
fn to_device<const D: usize>( tensor: NdArrayTensor<E, D>, _device: &NdArrayDevice ) -> NdArrayTensor<E, D>
Moves the tensor to the given device. Read more
source§fn empty<const D: usize>(
shape: Shape<D>,
device: &<NdArray<E> as Backend>::Device
) -> NdArrayTensor<E, D>
fn empty<const D: usize>( shape: Shape<D>, device: &<NdArray<E> as Backend>::Device ) -> NdArrayTensor<E, D>
Creates an empty tensor with the given shape. Read more
source§fn add<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn add<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Adds two tensors together. Read more
source§fn add_scalar<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<E, D>
fn add_scalar<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<E, D>
Adds a scalar to a tensor. Read more
source§fn sub<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn sub<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Subtracts two tensors. Read more
source§fn sub_scalar<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<E, D>
fn sub_scalar<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<E, D>
Subtracts a scalar from a tensor. Read more
source§fn mul<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn mul<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Multiplies two tensors together element-wise.
source§fn mul_scalar<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<E, D>
fn mul_scalar<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<E, D>
Multiplies a tensor by a scalar. Read more
source§fn div<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn div<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Divides two tensors element-wise. Read more
source§fn div_scalar<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<E, D>
fn div_scalar<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<E, D>
Divides a tensor by a scalar. Read more
source§fn matmul<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn matmul<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Multiplies two tensors together using matrix multiplication. Read more
source§fn neg<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn neg<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Negates a tensor element-wise.
source§fn recip<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn recip<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Calculates the reciprocals elementwise
source§fn swap_dims<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim1: usize,
dim2: usize
) -> NdArrayTensor<E, D>
fn swap_dims<const D: usize>( tensor: NdArrayTensor<E, D>, dim1: usize, dim2: usize ) -> NdArrayTensor<E, D>
Swaps two dimensions of a tensor. Read more
source§fn reshape<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
shape: Shape<D2>
) -> NdArrayTensor<E, D2>
fn reshape<const D1: usize, const D2: usize>( tensor: NdArrayTensor<E, D1>, shape: Shape<D2> ) -> NdArrayTensor<E, D2>
Reshapes a tensor. Read more
source§fn gather<const D: usize>(
dim: usize,
tensor: NdArrayTensor<E, D>,
indices: NdArrayTensor<i64, D>
) -> NdArrayTensor<E, D>
fn gather<const D: usize>( dim: usize, tensor: NdArrayTensor<E, D>, indices: NdArrayTensor<i64, D> ) -> NdArrayTensor<E, D>
Gather elements from a tensor. Read more
source§fn scatter<const D: usize>(
dim: usize,
tensor: NdArrayTensor<E, D>,
indices: NdArrayTensor<i64, D>,
value: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn scatter<const D: usize>( dim: usize, tensor: NdArrayTensor<E, D>, indices: NdArrayTensor<i64, D>, value: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Scatter elements into a tensor. Read more
source§fn select<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>
) -> NdArrayTensor<E, D>
fn select<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize, indices: NdArrayTensor<i64, 1> ) -> NdArrayTensor<E, D>
Select tensor elements along the given dimension corresponding for the given indices. Read more
source§fn select_assign<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize,
indices: NdArrayTensor<i64, 1>,
value: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn select_assign<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize, indices: NdArrayTensor<i64, 1>, value: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Assign the selected elements along the given dimension corresponding for the given indices
to the given value. Read more
source§fn slice<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
ranges: [Range<usize>; D2]
) -> NdArrayTensor<E, D1>
fn slice<const D1: usize, const D2: usize>( tensor: NdArrayTensor<E, D1>, ranges: [Range<usize>; D2] ) -> NdArrayTensor<E, D1>
Select tensor elements corresponding for the given ranges. Read more
source§fn slice_assign<const D1: usize, const D2: usize>(
tensor: NdArrayTensor<E, D1>,
ranges: [Range<usize>; D2],
value: NdArrayTensor<E, D1>
) -> NdArrayTensor<E, D1>
fn slice_assign<const D1: usize, const D2: usize>( tensor: NdArrayTensor<E, D1>, ranges: [Range<usize>; D2], value: NdArrayTensor<E, D1> ) -> NdArrayTensor<E, D1>
Assign the selected elements corresponding for the given ranges to the given value. Read more
source§fn mask_where<const D: usize>(
tensor: NdArrayTensor<E, D>,
mask: NdArrayTensor<bool, D>,
value: NdArrayTensor<E, D>
) -> NdArrayTensor<E, D>
fn mask_where<const D: usize>( tensor: NdArrayTensor<E, D>, mask: NdArrayTensor<bool, D>, value: NdArrayTensor<E, D> ) -> NdArrayTensor<E, D>
Update the given tensor with the value tensor where the mask is true. Read more
source§fn mask_fill<const D: usize>(
tensor: NdArrayTensor<E, D>,
mask: NdArrayTensor<bool, D>,
value: E
) -> NdArrayTensor<E, D>
fn mask_fill<const D: usize>( tensor: NdArrayTensor<E, D>, mask: NdArrayTensor<bool, D>, value: E ) -> NdArrayTensor<E, D>
Update the given tensor with the value where the mask is true. Read more
source§fn equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<bool, D>
fn equal<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<bool, D>
Equal comparison of two tensors. Read more
source§fn equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<bool, D>
fn equal_elem<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<bool, D>
Equal comparison of a tensor and a scalar. Read more
source§fn greater<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<bool, D>
fn greater<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<bool, D>
Greater than comparison of two tensors. Read more
source§fn greater_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<bool, D>
fn greater_elem<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<bool, D>
Greater than comparison of a tensor and a scalar. Read more
source§fn greater_equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<bool, D>
fn greater_equal<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<bool, D>
Greater than or equal comparison of two tensors. Read more
source§fn greater_equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<bool, D>
fn greater_equal_elem<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<bool, D>
Greater than or equal comparison of a tensor and a scalar. Read more
source§fn lower<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<bool, D>
fn lower<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<bool, D>
Less than comparison of two tensors. Read more
source§fn lower_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<bool, D>
fn lower_elem<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<bool, D>
Less than comparison of a tensor and a scalar. Read more
source§fn lower_equal<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: NdArrayTensor<E, D>
) -> NdArrayTensor<bool, D>
fn lower_equal<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: NdArrayTensor<E, D> ) -> NdArrayTensor<bool, D>
Less than or equal comparison of two tensors. Read more
source§fn lower_equal_elem<const D: usize>(
lhs: NdArrayTensor<E, D>,
rhs: E
) -> NdArrayTensor<bool, D>
fn lower_equal_elem<const D: usize>( lhs: NdArrayTensor<E, D>, rhs: E ) -> NdArrayTensor<bool, D>
Less than or equal comparison of a tensor and a scalar. Read more
source§fn detach<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn detach<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Detaches a tensor from the computation graph.
source§fn mean<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1>
fn mean<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1>
Mean of all elements in a tensor. Read more
source§fn sum<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1>
fn sum<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, 1>
Sum of all elements in a tensor. Read more
source§fn mean_dim<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize
) -> NdArrayTensor<E, D>
fn mean_dim<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize ) -> NdArrayTensor<E, D>
Mean of all elements in a tensor along a dimension. Read more
source§fn sum_dim<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize
) -> NdArrayTensor<E, D>
fn sum_dim<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize ) -> NdArrayTensor<E, D>
Sum of all elements in a tensor along a dimension. Read more
source§fn to_full_precision<const D: usize>(
tensor: &NdArrayTensor<E, D>
) -> NdArrayTensor<f32, D>
fn to_full_precision<const D: usize>( tensor: &NdArrayTensor<E, D> ) -> NdArrayTensor<f32, D>
Converts a tensor to full precision. Read more
source§fn from_full_precision<const D: usize>(
tensor: NdArrayTensor<f32, D>
) -> NdArrayTensor<E, D>
fn from_full_precision<const D: usize>( tensor: NdArrayTensor<f32, D> ) -> NdArrayTensor<E, D>
Converts a tensor from full precision. Read more
source§fn argmax<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn argmax<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize ) -> NdArrayTensor<i64, D>
Gets the indices of the maximum elements of a tensor along an axis. Read more
source§fn argmin<const D: usize>(
tensor: NdArrayTensor<E, D>,
dim: usize
) -> NdArrayTensor<i64, D>
fn argmin<const D: usize>( tensor: NdArrayTensor<E, D>, dim: usize ) -> NdArrayTensor<i64, D>
Gets the indices of the minimum elements of a tensor along an axis. Read more
source§fn exp<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn exp<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with exponential values. Read more
source§fn log<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn log<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with natural logarithm values. Read more
source§fn log1p<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn log1p<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with logarithm values of (1 + Xi). Read more
source§fn powf<const D: usize>(
tensor: NdArrayTensor<E, D>,
value: f32
) -> NdArrayTensor<E, D>
fn powf<const D: usize>( tensor: NdArrayTensor<E, D>, value: f32 ) -> NdArrayTensor<E, D>
Returns a new tensor with values raised to the power of
value. Read moresource§fn sqrt<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn sqrt<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with square root values. Read more
source§fn abs<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn abs<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with absolute values. Read more
source§fn cos<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn cos<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with cosine values. Read more
source§fn sin<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn sin<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with sine values. Read more
source§fn tanh<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn tanh<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with tangent values. Read more
source§fn erf<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
fn erf<const D: usize>(tensor: NdArrayTensor<E, D>) -> NdArrayTensor<E, D>
Returns a new tensor with the error function values. Read more
source§fn cat<const D: usize>(
tensors: Vec<NdArrayTensor<E, D>>,
dim: usize
) -> NdArrayTensor<E, D>
fn cat<const D: usize>( tensors: Vec<NdArrayTensor<E, D>>, dim: usize ) -> NdArrayTensor<E, D>
Catcatenates tensors along a dimension. Read more
source§fn clamp_min<const D: usize>(
tensor: NdArrayTensor<E, D>,
min: E
) -> NdArrayTensor<E, D>
fn clamp_min<const D: usize>( tensor: NdArrayTensor<E, D>, min: E ) -> NdArrayTensor<E, D>
Clamps a tensor under a minimum value. Read more
source§fn clamp_max<const D: usize>(
tensor: NdArrayTensor<E, D>,
max: E
) -> NdArrayTensor<E, D>
fn clamp_max<const D: usize>( tensor: NdArrayTensor<E, D>, max: E ) -> NdArrayTensor<E, D>
Clamps a tensor over a maximum value. Read more
source§fn clamp<const D: usize>(
tensor: NdArrayTensor<E, D>,
min: E,
max: E
) -> NdArrayTensor<E, D>
fn clamp<const D: usize>( tensor: NdArrayTensor<E, D>, min: E, max: E ) -> NdArrayTensor<E, D>
Clamps a tensor between a minimum and maximum value. Read more
source§fn into_int<const D: usize>(
tensor: <NdArray<E> as Backend>::TensorPrimitive<D>
) -> <NdArray<E> as Backend>::IntTensorPrimitive<D>
fn into_int<const D: usize>( tensor: <NdArray<E> as Backend>::TensorPrimitive<D> ) -> <NdArray<E> as Backend>::IntTensorPrimitive<D>
Converts float tensor to int tensor. Read more
source§fn zeros<const D: usize>(
shape: Shape<D>,
device: &<B as Backend>::Device
) -> <B as Backend>::TensorPrimitive<D>
fn zeros<const D: usize>( shape: Shape<D>, device: &<B as Backend>::Device ) -> <B as Backend>::TensorPrimitive<D>
Creates a new tensor with zeros. Read more
source§fn ones<const D: usize>(
shape: Shape<D>,
device: &<B as Backend>::Device
) -> <B as Backend>::TensorPrimitive<D>
fn ones<const D: usize>( shape: Shape<D>, device: &<B as Backend>::Device ) -> <B as Backend>::TensorPrimitive<D>
Creates a new tensor with ones. Read more
source§fn full<const D: usize>(
shape: Shape<D>,
fill_value: <B as Backend>::FloatElem,
device: &<B as Backend>::Device
) -> <B as Backend>::TensorPrimitive<D>
fn full<const D: usize>( shape: Shape<D>, fill_value: <B as Backend>::FloatElem, device: &<B as Backend>::Device ) -> <B as Backend>::TensorPrimitive<D>
Creates a tensor filled with given value. Read more
source§fn to_data<const D: usize>(
tensor: &<B as Backend>::TensorPrimitive<D>
) -> Reader<Data<<B as Backend>::FloatElem, D>>
fn to_data<const D: usize>( tensor: &<B as Backend>::TensorPrimitive<D> ) -> Reader<Data<<B as Backend>::FloatElem, D>>
Converts the tensor to a data structure. Read more
source§fn arange(
range: Range<usize>,
device: &<B as Backend>::Device
) -> <B as Backend>::IntTensorPrimitive<1>
fn arange( range: Range<usize>, device: &<B as Backend>::Device ) -> <B as Backend>::IntTensorPrimitive<1>
Creates a new tensor with values from the given range. Read more
source§fn arange_step(
range: Range<usize>,
step: usize,
device: &<B as Backend>::Device
) -> <B as Backend>::IntTensorPrimitive<1>
fn arange_step( range: Range<usize>, step: usize, device: &<B as Backend>::Device ) -> <B as Backend>::IntTensorPrimitive<1>
Creates a new tensor with values from the given range with the given step size. Read more
source§fn repeat<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
dim: usize,
times: usize
) -> <B as Backend>::TensorPrimitive<D>
fn repeat<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, dim: usize, times: usize ) -> <B as Backend>::TensorPrimitive<D>
Repeat the tensor along the given dimension. Read more
source§fn transpose<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<D>
fn transpose<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<D>
Transposes a tensor. Read more
source§fn set_require_grad<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
_require_grad: bool
) -> <B as Backend>::TensorPrimitive<D>
fn set_require_grad<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, _require_grad: bool ) -> <B as Backend>::TensorPrimitive<D>
Sets the
require_grad flag of a tensor.source§fn is_require_grad<const D: usize>(
_tensor: &<B as Backend>::TensorPrimitive<D>
) -> bool
fn is_require_grad<const D: usize>( _tensor: &<B as Backend>::TensorPrimitive<D> ) -> bool
Returns the
require_grad flag of a tensor.source§fn max<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<1>
fn max<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<1>
Gets the maximum element of a tensor. Read more
source§fn max_dim<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
dim: usize
) -> <B as Backend>::TensorPrimitive<D>
fn max_dim<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, dim: usize ) -> <B as Backend>::TensorPrimitive<D>
Gets the maximum elements of a tensor along an axis. Read more
source§fn max_dim_with_indices<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
dim: usize
) -> (<B as Backend>::TensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
fn max_dim_with_indices<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, dim: usize ) -> (<B as Backend>::TensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
Gets the maximum elements of a tensor along an axis and their indices. Read more
source§fn min<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>
) -> <B as Backend>::TensorPrimitive<1>
fn min<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D> ) -> <B as Backend>::TensorPrimitive<1>
Gets the minimum element of a tensor. Read more
source§fn min_dim<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
dim: usize
) -> <B as Backend>::TensorPrimitive<D>
fn min_dim<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, dim: usize ) -> <B as Backend>::TensorPrimitive<D>
Gets the minimum elements of a tensor along an axis. Read more
source§fn min_dim_with_indices<const D: usize>(
tensor: <B as Backend>::TensorPrimitive<D>,
dim: usize
) -> (<B as Backend>::TensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
fn min_dim_with_indices<const D: usize>( tensor: <B as Backend>::TensorPrimitive<D>, dim: usize ) -> (<B as Backend>::TensorPrimitive<D>, <B as Backend>::IntTensorPrimitive<D>)
Gets the minimum elements of a tensor along an axis and their indices. Read more
impl<E: Copy> Copy for NdArray<E>
Auto Trait Implementations§
impl<E> RefUnwindSafe for NdArray<E>where
E: RefUnwindSafe,
impl<E> Send for NdArray<E>where
E: Send,
impl<E> Sync for NdArray<E>where
E: Sync,
impl<E> Unpin for NdArray<E>where
E: Unpin,
impl<E> UnwindSafe for NdArray<E>where
E: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more