1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use alloc::vec::Vec;

use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use burn_tensor::Data;

use libm::{cosf, expf, logf, sinf};

/// Configuration to create an [PositionalEncoding](PositionalEncoding) layer.
#[derive(Config)]
pub struct PositionalEncodingConfig {
    /// Maximum sequence size to use.
    #[config(default = "5_000")]
    max_sequence_size: usize,

    /// The size of each vector.
    d_model: usize,

    /// Max time scale to use.
    #[config(default = "10_000")]
    max_timescale: usize,
}

/// Positional encoding layer for transformer models.
///
/// This layer adds positional information to the input embeddings, allowing the transformer model
/// to take into account the order of the sequence. The positional encoding is added to the input
/// embeddings by computing a set of sinusoidal functions with different frequencies and phases.
///
/// Sinusoids are used for positional embedding introduced in
/// [Attention is all you need](https://arxiv.org/abs/1706.03762).
///
/// The reference implementation can be found here:
/// [LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT
/// ](https://pytorch.org/tutorials/beginner/transformer_tutorial.html)
#[derive(Module, Debug)]
pub struct PositionalEncoding<B: Backend> {
    sinusoids: Tensor<B, 3>,
}

impl PositionalEncodingConfig {
    /// Initialize a new [PositionalEncoding](PositionalEncoding) module.
    pub fn init<B: Backend>(&self) -> PositionalEncoding<B> {
        let sinusoids =
            generate_sinusoids::<B>(self.max_sequence_size, self.d_model, self.max_timescale)
                .unsqueeze::<3>();

        PositionalEncoding { sinusoids }
    }
}

impl<B: Backend> PositionalEncoding<B> {
    /// Applies the forward pass on the input tensor by adding the sinusoids to the input.
    ///
    /// # Shapes
    ///
    /// * input: [batch_size, seq_length, d_model]
    /// * output: [batch_size, seq_length, d_model]
    ///
    ///
    /// # Panics
    ///
    /// * Panics if the input sequence length is greater than the maximum sequence size.
    /// * Panics if the input d_model is not equal to the d_model of the sinusoids.
    pub fn forward(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
        let [_, seq_length, d_model_input] = input.dims();

        let [batch_size, max_sequence_size, d_model] = self.sinusoids.dims();

        assert!(
            max_sequence_size >= seq_length,
            "max_sequence_size({}) must be greater or equal than length({seq_length})",
            max_sequence_size,
        );

        assert!(
            d_model_input == d_model,
            "d_model({}) of the input must be equal to d_model of encoding({})",
            d_model_input,
            d_model,
        );

        let slices = [0..batch_size, 0..seq_length, 0..d_model];

        input.add(self.sinusoids.clone().slice(slices))
    }
}

/// Returns sinusoids for positional embedding introduced in
/// [Attention is all you need](https://arxiv.org/abs/1706.03762).
///
/// The reference implementation can be found here:
/// [LANGUAGE MODELING WITH NN.TRANSFORMER AND TORCHTEXT
/// ](https://pytorch.org/tutorials/beginner/transformer_tutorial.html)
///
/// # Arguments
///
/// * `length` - The length of the sequence.
/// * `d_model` - The size of each vector.
/// * `max_timescale` - The maximum time scale to use.
///
/// # Returns
///
/// A tensor of shape [length, d_model] containing the sinusoids.
pub fn generate_sinusoids<B: Backend>(
    length: usize,
    d_model: usize,
    max_timescale: usize,
) -> Tensor<B, 2> {
    assert!(d_model % 2 == 0, "d_model must be even");
    assert!(
        max_timescale >= length,
        "max_timescale must be greater than length"
    );

    // Calculate the increment for the logarithmic timescale
    let log_timescale_increment = -logf(max_timescale as f32) / d_model as f32;

    // Create a vector to hold the sinusoids
    let mut scaled_time_sin_cos = Vec::with_capacity(length);

    // Loop over each position in the sequence
    for i in 0..length {
        // Create a vector to hold the sinusoids for this position
        let mut row = Vec::with_capacity(d_model / 2);
        // Loop over each dimension of the sinusoids
        for k in (0..d_model).step_by(2) {
            // Calculate the division term for this dimension
            let div_term = expf(k as f32 * log_timescale_increment);
            // Calculate the sine and cosine values for this dimension and position
            row.push(sinf(div_term * i as f32));
            row.push(cosf(div_term * i as f32));
        }

        // Add the sinusoids for this position to the vector
        scaled_time_sin_cos.push(row);
    }

    // Convert the sinusoids to a tensor and return it
    let data = Data::new(
        scaled_time_sin_cos.into_iter().flatten().collect(),
        [length, d_model].into(),
    );

    Tensor::<B, 2>::from_data(data.convert())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::TestBackend;

    #[test]
    fn test_module() {
        let d_model = 6;
        let length = 3;

        // expected to broadcast
        let batch_size = 2;

        let pe = PositionalEncodingConfig::new(d_model).init::<TestBackend>();

        // Use a tensor of zeros as input for easy verification of the output
        // The output should be the sinusoids broadcasted to the input shape
        let tensor = Tensor::zeros([batch_size, length, d_model]);

        let output = pe.forward(tensor);

        assert_eq!(output.shape().dims, [batch_size, length, d_model]);

        let expected = Tensor::<TestBackend, 3>::from_floats([
            [
                [0.00000, 1.00000, 0.00000, 1.00000, 0.00000, 1.00000],
                [0.84147, 0.54030, 0.04640, 0.99892, 0.00215, 1.00000],
                [0.90930, -0.41615, 0.09270, 0.99569, 0.00431, 0.99999],
            ],
            [
                [0.00000, 1.00000, 0.00000, 1.00000, 0.00000, 1.00000],
                [0.84147, 0.54030, 0.04640, 0.99892, 0.00215, 1.00000],
                [0.90930, -0.41615, 0.09270, 0.99569, 0.00431, 0.99999],
            ],
        ]);

        output.to_data().assert_approx_eq(&expected.to_data(), 5);
    }

    #[test]
    fn test_generate_sinusoids() {
        let sinusoids = generate_sinusoids::<TestBackend>(12, 6, 10_000);

        // The values are taken from the pytorch reference implementation
        let expected = Tensor::<TestBackend, 2>::from_floats([
            [0.00000, 1.00000, 0.00000, 1.00000, 0.00000, 1.00000],
            [0.84147, 0.54030, 0.04640, 0.99892, 0.00215, 1.00000],
            [0.90930, -0.41615, 0.09270, 0.99569, 0.00431, 0.99999],
            [0.14112, -0.98999, 0.13880, 0.99032, 0.00646, 0.99998],
            [-0.75680, -0.65364, 0.18460, 0.98281, 0.00862, 0.99996],
            [-0.95892, 0.28366, 0.23000, 0.97319, 0.01077, 0.99994],
            [-0.27942, 0.96017, 0.27491, 0.96147, 0.01293, 0.99992],
            [0.65699, 0.75390, 0.31922, 0.94768, 0.01508, 0.99989],
            [0.98936, -0.14550, 0.36285, 0.93185, 0.01723, 0.99985],
            [0.41212, -0.91113, 0.40570, 0.91401, 0.01939, 0.99981],
            [-0.54402, -0.83907, 0.44767, 0.89420, 0.02154, 0.99977],
            [-0.99999, 0.00443, 0.48868, 0.87246, 0.02370, 0.99972],
        ]);
        sinusoids.to_data().assert_approx_eq(&expected.to_data(), 5);
    }

    #[test]
    #[should_panic]
    fn d_model_input_should_match() {
        let d_model = 8;
        let pe = PositionalEncodingConfig::new(d_model).init::<TestBackend>();
        let input = Tensor::zeros([1, 5, 10]);
        let _output = pe.forward(input);
    }

    #[test]
    #[should_panic]
    fn input_length_should_be_less_than_max_len() {
        let d_model = 8;
        let pe = PositionalEncodingConfig::new(d_model).init::<TestBackend>();
        let input = Tensor::zeros([1, 6_000, d_model]);
        let _output = pe.forward(input);
    }
}