use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::nn::conv::Conv2dPaddingConfig;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use burn_tensor::module::max_pool2d;
#[derive(Config)]
pub struct MaxPool2dConfig {
    pub channels: usize,
    pub kernel_size: [usize; 2],
    #[config(default = "[1, 1]")]
    pub strides: [usize; 2],
    #[config(default = "MaxPool2dPaddingConfig::Valid")]
    pub padding: MaxPool2dPaddingConfig,
}
pub type MaxPool2dPaddingConfig = Conv2dPaddingConfig;
#[derive(Module, Debug, Clone)]
pub struct MaxPool2d {
    stride: [usize; 2],
    kernel_size: [usize; 2],
    padding: MaxPool2dPaddingConfig,
}
impl MaxPool2dConfig {
    pub fn init(&self) -> MaxPool2d {
        MaxPool2d {
            stride: self.strides,
            kernel_size: self.kernel_size,
            padding: self.padding.clone(),
        }
    }
}
impl MaxPool2d {
    pub fn forward<B: Backend>(&self, input: Tensor<B, 4>) -> Tensor<B, 4> {
        let [_batch_size, _channels_in, height_in, width_in] = input.dims();
        let padding =
            self.padding
                .calculate_padding_2d(height_in, width_in, &self.kernel_size, &self.stride);
        max_pool2d(input, self.kernel_size, self.stride, padding)
    }
}