1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use crate as burn;

use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::nn::Initializer;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;
use burn_tensor::module::conv1d;
use burn_tensor::ops::conv::calculate_conv_padding;
use burn_tensor::ops::ConvOptions;

use libm::sqrt;

/// Configuration to create an [1D convolution](Conv1d) layer.
#[derive(Config)]
pub struct Conv1dConfig {
    /// The number of input channels.
    pub channels_in: usize,
    /// The number of output channels.
    pub channels_out: usize,
    /// The size of the kernel.
    pub kernel_size: usize,
    /// The stride of the convolution.
    #[config(default = "1")]
    pub stride: usize,
    /// Spacing between kernel elements.
    #[config(default = "1")]
    pub dilation: usize,
    /// Controls the connections between input and output channels.
    #[config(default = "1")]
    pub groups: usize,
    /// The padding configuration.
    #[config(default = "Conv1dPaddingConfig::Valid")]
    pub padding: Conv1dPaddingConfig,
    /// If bias should be added to the output.
    #[config(default = true)]
    pub bias: bool,
    /// The type of function used to initialize neural network parameters
    #[config(default = "Initializer::UniformDefault")]
    pub initializer: Initializer,
}

/// Padding configuration for 1D convolution [config](Conv1dConfig).
#[derive(Module, Config, Debug)]
pub enum Conv1dPaddingConfig {
    /// Dynamicaly calculate the amount of padding necessary to ensure that the output size will be
    /// the same as the input.
    Same,
    /// Same as no padding.
    Valid,
    /// Applies the specified amount of padding to all inputs.
    Explicit(usize),
}

/// Applies a 1D convolution over input tensors.
///
/// # Params
///
/// - weight: Tensor of shape [channels_out, channels_in, kernel_size] initialized from a uniform
///     distribution `U(-k, k)` where `k = sqrt(1 / channels_in * kernel_size)`
///
/// - bias:   Tensor of shape [channels_out], initialized from a uniform distribution `U(-k, k)`
///     where `k = sqrt(1 / channels_in * kernel_size)`
#[derive(Module, Debug)]
pub struct Conv1d<B: Backend> {
    weight: Param<Tensor<B, 3>>,
    bias: Option<Param<Tensor<B, 1>>>,
    stride: usize,
    kernel_size: usize,
    dilation: usize,
    groups: usize,
    padding: Conv1dPaddingConfig,
}

impl Conv1dConfig {
    /// Initialize a new [conv1d](Conv1d) module.
    pub fn init<B: Backend>(&self) -> Conv1d<B> {
        let k = (self.channels_in * self.kernel_size) as f64;
        let k = sqrt(1.0 / k);

        let initializer = if let Initializer::UniformDefault = self.initializer {
            Initializer::Uniform(-k, k)
        } else {
            self.initializer.clone()
        };

        let weight = initializer.init([self.channels_out, self.channels_in, self.kernel_size]);

        let bias = if self.bias {
            Some(Param::from(initializer.init([self.channels_out])))
        } else {
            None
        };

        Conv1d {
            weight: Param::from(weight),
            bias,
            stride: 1, // TODO: Add the stride to the config when properly supported.
            kernel_size: self.kernel_size,
            padding: self.padding.clone(),
            dilation: self.dilation,
            groups: self.groups,
        }
    }
    /// Initialize a new [conv1d](Conv1d) module with a [record](Conv1dRecord).
    pub fn init_with<B: Backend>(&self, record: Conv1dRecord<B>) -> Conv1d<B> {
        Conv1d {
            weight: record.weight,
            bias: record.bias,
            stride: 1, // TODO: Add the stride to the config when properly supported.
            kernel_size: self.kernel_size,
            padding: self.padding.clone(),
            dilation: self.dilation,
            groups: self.groups,
        }
    }
}

impl<B: Backend> Conv1d<B> {
    /// Applies the forward pass on the input tensor.
    ///
    /// # Shapes
    ///
    /// - input: [batch_size, channels_in, length_in],
    /// - output: [batch_size, channels_out, length_out],
    pub fn forward(&self, input: Tensor<B, 3>) -> Tensor<B, 3> {
        let same_padding = || {
            let [_batch_size, _channels_in, length] = input.dims();
            calculate_conv_padding(self.kernel_size, self.stride, length, length)
        };

        let padding = match &self.padding {
            Conv1dPaddingConfig::Valid => 0,
            Conv1dPaddingConfig::Same => same_padding(),
            Conv1dPaddingConfig::Explicit(value) => *value,
        };

        conv1d(
            input,
            self.weight.val(),
            self.bias.as_ref().map(|bias| bias.val()),
            ConvOptions::new([self.stride], [padding], [self.dilation], self.groups),
        )
    }
}

#[cfg(test)]
mod tests {
    use burn_tensor::Data;

    use super::*;
    use crate::TestBackend;

    #[test]
    fn initializer_default() {
        TestBackend::seed(0);

        let config = Conv1dConfig::new(5, 5, 5);
        let k = (config.channels_in * config.kernel_size) as f64;
        let k = sqrt(1.0 / k) as f32;
        let conv = config.init::<TestBackend>();

        assert_eq!(config.initializer, Initializer::UniformDefault);
        conv.weight.to_data().assert_in_range(-k, k);
    }

    #[test]
    fn initializer_zeros() {
        TestBackend::seed(0);

        let config = Conv1dConfig::new(5, 5, 5).with_initializer(Initializer::Zeros);
        let conv = config.init::<TestBackend>();

        assert_eq!(config.initializer, Initializer::Zeros);
        conv.weight
            .to_data()
            .assert_approx_eq(&Data::zeros(conv.weight.shape()), 3);
    }
}