pub struct LayerNorm<B: Backend> { /* private fields */ }Expand description
Applies Layer Normalization over an input tensor as described in the paper Layer Normalization.
Y = norm(X) * γ + β
Implementations§
Trait Implementations§
source§impl<B> ADModule<B> for LayerNorm<B>where
B: ADBackend + Backend,
impl<B> ADModule<B> for LayerNorm<B>where B: ADBackend + Backend,
type InnerModule = LayerNorm<<B as ADBackend>::InnerBackend>
source§fn valid(&self) -> Self::InnerModule
fn valid(&self) -> Self::InnerModule
Get the same module, but on the inner backend without auto-differentiation.
source§impl<B: Backend> Module<B> for LayerNorm<B>
impl<B: Backend> Module<B> for LayerNorm<B>
§type Record = LayerNormRecord<B>
type Record = LayerNormRecord<B>
Type to save and load the module.
source§fn load_record(self, record: Self::Record) -> Self
fn load_record(self, record: Self::Record) -> Self
Load the module state from a record.
source§fn into_record(self) -> Self::Record
fn into_record(self) -> Self::Record
Convert the module into a record containing the state.
source§fn num_params(&self) -> usize
fn num_params(&self) -> usize
Get the number of parameters the module has, including all of its sub-modules.
source§fn visit<V: ModuleVisitor<B>>(&self, visitor: &mut V)
fn visit<V: ModuleVisitor<B>>(&self, visitor: &mut V)
Visit each tensor in the module with a visitor.
source§fn map<M: ModuleMapper<B>>(self, mapper: &mut M) -> Self
fn map<M: ModuleMapper<B>>(self, mapper: &mut M) -> Self
Map each tensor in the module with a mapper.
source§fn devices(&self) -> Vec<B::Device>
fn devices(&self) -> Vec<B::Device>
Get the device list of the module and all of its sub-modules.
source§fn fork(self, device: &B::Device) -> Self
fn fork(self, device: &B::Device) -> Self
Fork the module and all of its sub-modules to the given device. Read more
Auto Trait Implementations§
impl<B> RefUnwindSafe for LayerNorm<B>where <B as Backend>::TensorPrimitive<1>: RefUnwindSafe,
impl<B> Send for LayerNorm<B>
impl<B> Sync for LayerNorm<B>
impl<B> Unpin for LayerNorm<B>where <B as Backend>::TensorPrimitive<1>: Unpin,
impl<B> UnwindSafe for LayerNorm<B>where <B as Backend>::TensorPrimitive<1>: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more