1use alloc::format;
2
3use crate as burn;
4
5use crate::config::Config;
6use crate::module::{Content, DisplaySettings, Ignored, Module, ModuleDisplay, Param};
7use crate::nn::Initializer;
8use crate::nn::PaddingConfig3d;
9use crate::tensor::Tensor;
10use crate::tensor::backend::Backend;
11use crate::tensor::module::conv3d;
12use crate::tensor::ops::ConvOptions;
13
14use crate::nn::conv::checks;
15
16#[derive(Config, Debug)]
18pub struct Conv3dConfig {
19 pub channels: [usize; 2],
21 pub kernel_size: [usize; 3],
23 #[config(default = "[1, 1, 1]")]
25 pub stride: [usize; 3],
26 #[config(default = "[1, 1, 1]")]
28 pub dilation: [usize; 3],
29 #[config(default = "1")]
31 pub groups: usize,
32 #[config(default = "PaddingConfig3d::Valid")]
34 pub padding: PaddingConfig3d,
35 #[config(default = true)]
37 pub bias: bool,
38 #[config(
40 default = "Initializer::KaimingUniform{gain:1.0/num_traits::Float::sqrt(3.0),fan_out_only:false}"
41 )]
42 pub initializer: Initializer,
43}
44
45#[derive(Module, Debug)]
49#[module(custom_display)]
50pub struct Conv3d<B: Backend> {
51 pub weight: Param<Tensor<B, 5>>,
53 pub bias: Option<Param<Tensor<B, 1>>>,
55 pub stride: [usize; 3],
57 pub kernel_size: [usize; 3],
59 pub dilation: [usize; 3],
61 pub groups: usize,
63 pub padding: Ignored<PaddingConfig3d>,
65}
66
67impl Conv3dConfig {
68 pub fn init<B: Backend>(&self, device: &B::Device) -> Conv3d<B> {
70 checks::checks_channels_div_groups(self.channels[0], self.channels[1], self.groups);
71 if self.padding == PaddingConfig3d::Same {
72 checks::check_same_padding_support(&self.kernel_size);
73 }
74
75 let shape = [
76 self.channels[1],
77 self.channels[0] / self.groups,
78 self.kernel_size[0],
79 self.kernel_size[1],
80 self.kernel_size[2],
81 ];
82
83 let k = self.kernel_size.iter().product::<usize>();
84 let fan_in = self.channels[0] / self.groups * k;
85 let fan_out = self.channels[1] / self.groups * k;
86
87 let weight = self
88 .initializer
89 .init_with(shape, Some(fan_in), Some(fan_out), device);
90 let mut bias = None;
91
92 if self.bias {
93 bias = Some(self.initializer.init_with(
94 [self.channels[1]],
95 Some(fan_in),
96 Some(fan_out),
97 device,
98 ));
99 }
100
101 Conv3d {
102 weight,
103 bias,
104 stride: self.stride,
105 kernel_size: self.kernel_size,
106 dilation: self.dilation,
107 padding: Ignored(self.padding.clone()),
108 groups: self.groups,
109 }
110 }
111}
112
113impl<B: Backend> ModuleDisplay for Conv3d<B> {
114 fn custom_settings(&self) -> Option<DisplaySettings> {
115 DisplaySettings::new()
116 .with_new_line_after_attribute(false)
117 .optional()
118 }
119
120 fn custom_content(&self, content: Content) -> Option<Content> {
121 let padding_formatted = format!("{}", &self.padding);
123
124 let stride = format!("{:?}", self.stride);
126 let kernel_size = format!("{:?}", self.kernel_size);
127 let dilation = format!("{:?}", self.dilation);
128
129 content
130 .add("stride", &stride)
131 .add("kernel_size", &kernel_size)
132 .add("dilation", &dilation)
133 .add("groups", &self.groups)
134 .add("padding", &padding_formatted)
135 .optional()
136 }
137}
138
139impl<B: Backend> Conv3d<B> {
140 pub fn forward(&self, input: Tensor<B, 5>) -> Tensor<B, 5> {
149 let [_batch_size, _channels_in, depth_in, height_in, width_in] = input.dims();
150 let padding = self.padding.calculate_padding_3d(
151 depth_in,
152 height_in,
153 width_in,
154 &self.kernel_size,
155 &self.stride,
156 );
157 conv3d(
158 input,
159 self.weight.val(),
160 self.bias.as_ref().map(|bias| bias.val()),
161 ConvOptions::new(self.stride, padding, self.dilation, self.groups),
162 )
163 }
164}
165
166#[cfg(test)]
167mod tests {
168 use burn_tensor::{ElementConversion, Tolerance, ops::FloatElem};
169 type FT = FloatElem<TestBackend>;
170
171 use super::*;
172 use crate::TestBackend;
173 use crate::tensor::TensorData;
174
175 #[test]
176 fn initializer_default() {
177 TestBackend::seed(0);
178
179 let config = Conv3dConfig::new([5, 1], [5, 5, 5]);
180 let k = (config.channels[0]
181 * config.kernel_size[0]
182 * config.kernel_size[1]
183 * config.kernel_size[2]) as f64;
184 let k = (config.groups as f64 / k).sqrt().elem::<FT>();
185 let device = Default::default();
186 let conv = config.init::<TestBackend>(&device);
187
188 conv.weight.to_data().assert_within_range(-k..k);
189 }
190
191 #[test]
192 fn initializer_zeros() {
193 TestBackend::seed(0);
194
195 let config = Conv3dConfig::new([5, 2], [5, 5, 5]).with_initializer(Initializer::Zeros);
196 let device = Default::default();
197 let conv = config.init::<TestBackend>(&device);
198
199 assert_eq!(config.initializer, Initializer::Zeros);
200 conv.weight.to_data().assert_approx_eq::<FT>(
201 &TensorData::zeros::<f32, _>(conv.weight.shape()),
202 Tolerance::default(),
203 );
204 }
205
206 #[test]
207 fn initializer_fan_out() {
208 TestBackend::seed(0);
209
210 let init = Initializer::KaimingUniform {
211 gain: 1.0 / 3.0f64.sqrt(),
212 fan_out_only: true, };
214 let device = Default::default();
215 let config = Conv3dConfig::new([5, 1], [5, 5, 5]).with_initializer(init.clone());
216 let _ = config.init::<TestBackend>(&device);
217
218 assert_eq!(config.initializer, init);
219 }
220
221 #[test]
222 fn initializer_fan_with_groups_is_valid() {
223 TestBackend::seed(0);
224
225 let init = Initializer::KaimingUniform {
226 gain: 1.0 / 3.0f64.sqrt(),
227 fan_out_only: true,
228 };
229 let device = Default::default();
230 let config = Conv3dConfig::new([4, 4], [1, 1, 1])
231 .with_initializer(init.clone())
232 .with_groups(4);
233 let _ = config.init::<TestBackend>(&device);
234
235 assert_eq!(config.initializer, init);
236 }
237
238 #[test]
239 #[should_panic = "Same padding with an even kernel size is not supported"]
240 fn same_with_even_kernel_is_invalid() {
241 let device = Default::default();
242 let config = Conv3dConfig::new([4, 4], [2, 2, 2]).with_padding(PaddingConfig3d::Same);
243 let _ = config.init::<TestBackend>(&device);
244 }
245
246 #[test]
247 fn display() {
248 let config = Conv3dConfig::new([5, 1], [5, 5, 5]);
249 let conv = config.init::<TestBackend>(&Default::default());
250
251 assert_eq!(
252 alloc::format!("{conv}"),
253 "Conv3d {stride: [1, 1, 1], kernel_size: [5, 5, 5], dilation: [1, 1, 1], groups: 1, padding: Valid, params: 626}"
254 );
255 }
256
257 #[test]
258 #[should_panic = "Number of channels in input tensor and input channels of convolution must be equal. got: 4, expected: 5"]
259 fn input_channels_mismatch() {
260 let config = Conv3dConfig::new([5, 3], [3, 3, 3]);
261 let conv = config.init::<TestBackend>(&Default::default());
262
263 let input = Tensor::<TestBackend, 5>::zeros([1, 4, 10, 10, 10], &Default::default());
264 let _ = conv.forward(input);
265 }
266}