#[repr(C)]pub struct BumpString<A: BumpAllocator> { /* private fields */ }
Expand description
A bump allocated String
.
When you are done building the string, you can turn it into a &str
with into_str
.
§Examples
You can create a BumpString
from a literal string with BumpString::from_str_in
:
let hello = BumpString::from_str_in("Hello, world!", &bump);
You can append a char
to a string with the push
method, and
append a &str
with the push_str
method:
let mut hello = BumpString::from_str_in("Hello, ", &bump);
hello.push('w');
hello.push_str("orld!");
assert_eq!(hello.as_str(), "Hello, world!");
If you have a vector of UTF-8 bytes, you can create a BumpString
from it with
the from_utf8
method:
// some bytes, in a vector
let sparkle_heart = bump_vec![in ≎ 240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = BumpString::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
Implementations§
Source§impl<A: BumpAllocator> BumpString<A>
impl<A: BumpAllocator> BumpString<A>
Sourcepub fn new_in(allocator: A) -> Self
pub fn new_in(allocator: A) -> Self
Constructs a new empty BumpString
.
Given that the BumpString
is empty, this will not allocate any initial
buffer. While that means that this initial operation is very
inexpensive, it may cause excessive allocation later when you add
data. If you have an idea of how much data the BumpString
will hold,
consider the with_capacity_in
method to prevent excessive
re-allocation.
§Examples
let string = BumpString::<_>::new_in(&bump);
assert_eq!(string.len(), 0);
assert_eq!(string.capacity(), 0);
Sourcepub fn from_utf8(
vec: BumpVec<u8, A>,
) -> Result<Self, FromUtf8Error<BumpVec<u8, A>>>
pub fn from_utf8( vec: BumpVec<u8, A>, ) -> Result<Self, FromUtf8Error<BumpVec<u8, A>>>
Converts a vector of bytes to a BumpString
.
A string (BumpString
) is made of bytes (u8
), and a vector of bytes
(BumpVec<u8>
) is made of bytes, so this function converts between the
two. Not all byte slices are valid BumpString
s, however: BumpString
requires that it is valid UTF-8. from_utf8()
checks to ensure that
the bytes are valid UTF-8, and then does the conversion.
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the validity check, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the check.
This method will take care to not copy the vector, for efficiency’s sake.
If you need a &str
instead of a BumpString
, consider
str::from_utf8
.
The inverse of this method is into_bytes
.
§Errors
Returns Err
if the slice is not UTF-8 with a description as to why the
provided bytes are not UTF-8. The vector you moved in is also included.
§Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = bump_vec![in ≎ 240, 159, 146, 150];
// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = BumpString::from_utf8(sparkle_heart).unwrap();
assert_eq!("💖", sparkle_heart);
Incorrect bytes:
// some invalid bytes, in a vector
let sparkle_heart = bump_vec![in ≎ 0, 159, 146, 150];
assert!(BumpString::from_utf8(sparkle_heart).is_err());
Sourcepub unsafe fn from_utf8_unchecked(vec: BumpVec<u8, A>) -> Self
pub unsafe fn from_utf8_unchecked(vec: BumpVec<u8, A>) -> Self
Converts a vector of bytes to a BumpString
without checking that the
string contains valid UTF-8.
See the safe version, from_utf8
, for more details.
§Safety
The bytes passed in must be valid UTF-8.
§Examples
// some bytes, in a vector
let sparkle_heart = bump_vec![in ≎ 240, 159, 146, 150];
let sparkle_heart = unsafe {
BumpString::from_utf8_unchecked(sparkle_heart)
};
assert_eq!("💖", sparkle_heart);
Sourcepub const fn len(&self) -> usize
pub const fn len(&self) -> usize
Returns the length of this string, in bytes, not char
s or
graphemes. In other words, it might not be what a human considers the
length of the string.
§Examples
let a = BumpString::from_str_in("foo", &bump);
assert_eq!(a.len(), 3);
let fancy_f = BumpString::from_str_in("ƒoo", &bump);
assert_eq!(fancy_f.len(), 4);
assert_eq!(fancy_f.chars().count(), 3);
Sourcepub const fn is_empty(&self) -> bool
pub const fn is_empty(&self) -> bool
Returns true
if this string has a length of zero, and false
otherwise.
§Examples
let mut v = BumpString::new_in(&bump);
assert!(v.is_empty());
v.push('a');
assert!(!v.is_empty());
Sourcepub fn into_bytes(self) -> BumpVec<u8, A> ⓘ
pub fn into_bytes(self) -> BumpVec<u8, A> ⓘ
Converts a BumpString
into a BumpVec<u8>
.
This consumes the BumpString
, so we do not need to copy its contents.
§Examples
let mut s = BumpString::new_in(&bump);
s.push_str("hello");
let bytes = s.into_bytes();
assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
Sourcepub fn split_off(&mut self, range: impl RangeBounds<usize>) -> Selfwhere
A: Clone,
pub fn split_off(&mut self, range: impl RangeBounds<usize>) -> Selfwhere
A: Clone,
Splits the string into two by removing the specified range.
This method does not allocate and does not change the order of the elements.
The excess capacity may end up in either string.
This behavior is different from String::split_off
which allocates a new string for the split-off bytes
so the original string keeps its capacity.
If you rather want that behavior then you can write this instead:
let mut other = BumpString::new_in(*string.allocator());
other.push_str(&string[start..end]);
string.drain(start..end);
§Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Complexity
This operation takes O(1)
time if either the range starts at 0, ends at len
, or is empty.
Otherwise it takes O(min(end, len - start))
time.
§Examples
let mut string = BumpString::with_capacity_in(10, &bump);
string.push_str("foobarbazqux");
let foo = string.split_off(..3);
assert_eq!(foo, "foo");
assert_eq!(string, "barbazqux");
let qux = string.split_off(6..);
assert_eq!(qux, "qux");
assert_eq!(string, "barbaz");
let rb = string.split_off(2..4);
assert_eq!(rb, "rb");
assert_eq!(string, "baaz");
let rest = string.split_off(..);
assert_eq!(rest, "baaz");
assert_eq!(string, "");
Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Truncates this string, removing all contents.
While this means the string will have a length of zero, it does not touch its capacity.
§Examples
let mut s = BumpString::from_str_in("foo", &bump);
s.clear();
assert!(s.is_empty());
assert_eq!(s.len(), 0);
assert!(s.capacity() >= 3);
Sourcepub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Shortens this string to the specified length.
If new_len
is greater than or equal to the string’s current length, this has no
effect.
Note that this method has no effect on the allocated capacity of the string
§Panics
Panics if new_len
does not lie on a char
boundary.
§Examples
let mut s = BumpString::from_str_in("hello", &bump);
s.truncate(2);
assert_eq!(s, "he");
Sourcepub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char
from this string at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the buffer.
§Panics
Panics if idx
is larger than or equal to the string’s length,
or if it does not lie on a char
boundary.
§Examples
let mut s = BumpString::from_str_in("abç", &bump);
assert_eq!(s.remove(0), 'a');
assert_eq!(s.remove(1), 'ç');
assert_eq!(s.remove(0), 'b');
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the characters specified by the predicate.
In other words, remove all characters c
such that f(c)
returns false
.
This method operates in place, visiting each character exactly once in the
original order, and preserves the order of the retained characters.
§Examples
let mut s = BumpString::from_str_in("f_o_ob_ar", &bump);
s.retain(|c| c != '_');
assert_eq!(s, "foobar");
Because the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.
let mut s = BumpString::from_str_in("abcde", &bump); ///
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
s.retain(|_| *iter.next().unwrap());
assert_eq!(s, "bce");
Sourcepub fn drain<R>(&mut self, range: R) -> Drain<'_> ⓘwhere
R: RangeBounds<usize>,
pub fn drain<R>(&mut self, range: R) -> Drain<'_> ⓘwhere
R: RangeBounds<usize>,
Removes the specified range from the string in bulk, returning all removed characters as an iterator.
The returned iterator keeps a mutable borrow on the string to optimize its implementation.
§Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Leaking
If the returned iterator goes out of scope without being dropped (due to
core::mem::forget
, for example), the string may still contain a copy
of any drained characters, or may have lost characters arbitrarily,
including characters outside the range.
§Examples
Basic usage:
let mut s = BumpString::from_str_in("α is alpha, β is beta", &bump);
let beta_offset = s.find('β').unwrap_or(s.len());
// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");
// A full range clears the string, like `clear()` does
s.drain(..);
assert_eq!(s, "");
Sourcepub fn as_mut_str(&mut self) -> &mut str
pub fn as_mut_str(&mut self) -> &mut str
Converts a BumpString
into a mutable string slice.
Sourcepub unsafe fn as_mut_vec(&mut self) -> &mut BumpVec<u8, A> ⓘ
pub unsafe fn as_mut_vec(&mut self) -> &mut BumpVec<u8, A> ⓘ
Returns a mutable reference to the contents of this BumpString
.
§Safety
This function is unsafe because the returned &mut BumpVec<u8>
allows writing
bytes which are not valid UTF-8. If this constraint is violated, using
the original BumpString
after dropping the &mut BumpVec<u8>
may violate memory
safety, as BumpString
s must be valid UTF-8.
Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Returns a raw pointer to the slice, or a dangling raw pointer valid for zero sized reads.
Sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Returns an unsafe mutable pointer to slice, or a dangling raw pointer valid for zero sized reads.
Sourcepub const fn as_non_null(&self) -> NonNull<u8>
pub const fn as_non_null(&self) -> NonNull<u8>
Returns a NonNull
pointer to the string’s buffer, or a dangling
NonNull
pointer valid for zero sized reads if the string didn’t allocate.
The caller must ensure that the string outlives the pointer this function returns, or else it will end up dangling. Modifying the string may cause its buffer to be reallocated, which would also make any pointers to it invalid.
This method guarantees that for the purpose of the aliasing model, this method
does not materialize a reference to the underlying slice, and thus the returned pointer
will remain valid when mixed with other calls to as_ptr
, as_mut_ptr
,
and as_non_null
.
Note that calling other methods that materialize references to the slice,
or references to specific elements you are planning on accessing through this pointer,
may still invalidate this pointer.
See the second example below for how this guarantee can be used.
§Examples
// Allocate vector big enough for 4 elements.
let size = 4;
let mut x = BumpString::with_capacity_in(size, &bump);
let x_ptr = x.as_non_null();
// Initialize elements via raw pointer writes, then set length.
unsafe {
for i in 0..size {
x_ptr.add(i).write(i as u8 + b'a');
}
x.as_mut_vec().set_len(size);
}
assert_eq!(&*x, "abcd");
Due to the aliasing guarantee, the following code is legal:
unsafe {
let v = bump_format!(in &bump, "a");
let ptr1 = v.as_non_null();
ptr1.write(b'b');
let ptr2 = v.as_non_null();
ptr2.write(b'c');
// Notably, the write to `ptr2` did *not* invalidate `ptr1`:
ptr1.write(b'd');
}
Sourcepub fn with_capacity_in(capacity: usize, allocator: A) -> Self
pub fn with_capacity_in(capacity: usize, allocator: A) -> Self
Constructs a new empty BumpString
with the specified capacity
in the provided bump allocator.
The string will be able to hold capacity
bytes without
reallocating. If capacity
is 0, the string will not allocate.
§Panics
Panics if the allocation fails.
§Examples
let mut s = BumpString::<_>::with_capacity_in(10, &bump);
// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);
// These are all done without reallocating...
let cap = s.capacity();
for _ in 0..10 {
s.push('a');
}
assert_eq!(s.capacity(), cap);
// ...but this may make the string reallocate
s.push('a');
Sourcepub fn try_with_capacity_in(
capacity: usize,
allocator: A,
) -> Result<Self, AllocError>
pub fn try_with_capacity_in( capacity: usize, allocator: A, ) -> Result<Self, AllocError>
Constructs a new empty BumpString
with the specified capacity
in the provided bump allocator.
The string will be able to hold capacity
bytes without
reallocating. If capacity
is 0, the string will not allocate.
§Errors
Errors if the allocation fails.
§Examples
let mut s = BumpString::<_>::try_with_capacity_in(10, &bump)?;
// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);
// These are all done without reallocating...
let cap = s.capacity();
for _ in 0..10 {
s.push('a');
}
assert_eq!(s.capacity(), cap);
// ...but this may make the string reallocate
s.push('a');
Sourcepub fn from_str_in(string: &str, allocator: A) -> Self
pub fn from_str_in(string: &str, allocator: A) -> Self
Sourcepub fn try_from_str_in(string: &str, allocator: A) -> Result<Self, AllocError>
pub fn try_from_str_in(string: &str, allocator: A) -> Result<Self, AllocError>
Sourcepub fn from_utf8_lossy_in(v: &[u8], allocator: A) -> Self
pub fn from_utf8_lossy_in(v: &[u8], allocator: A) -> Self
Converts a slice of bytes to a string, including invalid characters.
Strings are made of bytes (u8
), and a slice of bytes
(&[u8]
) is made of bytes, so this function converts
between the two. Not all byte slices are valid strings, however: strings
are required to be valid UTF-8. During this conversion,
from_utf8_lossy()
will replace any invalid UTF-8 sequences with
U+FFFD REPLACEMENT CHARACTER
, which looks like this: �
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the conversion, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the checks.
§Panics
Panics if the allocation fails.
§Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = [240, 159, 146, 150];
let sparkle_heart = BumpString::from_utf8_lossy_in(&sparkle_heart, &bump);
assert_eq!("💖", sparkle_heart);
Incorrect bytes:
// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = BumpString::from_utf8_lossy_in(input, &bump);
assert_eq!("Hello �World", output);
Sourcepub fn try_from_utf8_lossy_in(
v: &[u8],
allocator: A,
) -> Result<Self, AllocError>
pub fn try_from_utf8_lossy_in( v: &[u8], allocator: A, ) -> Result<Self, AllocError>
Converts a slice of bytes to a string, including invalid characters.
Strings are made of bytes (u8
), and a slice of bytes
(&[u8]
) is made of bytes, so this function converts
between the two. Not all byte slices are valid strings, however: strings
are required to be valid UTF-8. During this conversion,
from_utf8_lossy()
will replace any invalid UTF-8 sequences with
U+FFFD REPLACEMENT CHARACTER
, which looks like this: �
If you are sure that the byte slice is valid UTF-8, and you don’t want
to incur the overhead of the conversion, there is an unsafe version
of this function, from_utf8_unchecked
, which has the same behavior
but skips the checks.
§Errors
Errors if the allocation fails.
§Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = [240, 159, 146, 150];
let sparkle_heart = BumpString::try_from_utf8_lossy_in(&sparkle_heart, &bump)?;
assert_eq!("💖", sparkle_heart);
Incorrect bytes:
// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = BumpString::try_from_utf8_lossy_in(input, &bump)?;
assert_eq!("Hello �World", output);
Sourcepub fn from_utf16_in(v: &[u16], allocator: A) -> Result<Self, FromUtf16Error>
pub fn from_utf16_in(v: &[u16], allocator: A) -> Result<Self, FromUtf16Error>
Decode a UTF-16–encoded vector v
into a BumpString
, returning Err
if v
contains any invalid data.
§Panics
Panics if the allocation fails.
§Examples
// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0x0069, 0x0063];
assert_eq!(BumpString::from_str_in("𝄞music", &bump),
BumpString::from_utf16_in(v, &bump).unwrap());
// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0xD800, 0x0069, 0x0063];
assert!(BumpString::from_utf16_in(v, &bump).is_err());
Sourcepub fn try_from_utf16_in(
v: &[u16],
allocator: A,
) -> Result<Result<Self, FromUtf16Error>, AllocError>
pub fn try_from_utf16_in( v: &[u16], allocator: A, ) -> Result<Result<Self, FromUtf16Error>, AllocError>
Decode a UTF-16–encoded vector v
into a BumpString
, returning Err
if v
contains any invalid data.
§Errors
Errors if the allocation fails.
§Examples
// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0x0069, 0x0063];
assert_eq!(BumpString::try_from_str_in("𝄞music", &bump)?,
BumpString::try_from_utf16_in(v, &bump)?.unwrap());
// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0xD800, 0x0069, 0x0063];
assert!(BumpString::try_from_utf16_in(v, &bump)?.is_err());
Sourcepub fn from_utf16_lossy_in(v: &[u16], allocator: A) -> Self
pub fn from_utf16_lossy_in(v: &[u16], allocator: A) -> Self
Decode a UTF-16–encoded slice v
into a BumpString
, replacing
invalid data with the replacement character (U+FFFD
).
§Panics
Panics if the allocation fails.
§Examples
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0xDD1E, 0x0069, 0x0063,
0xD834];
assert_eq!(BumpString::from_str_in("𝄞mus\u{FFFD}ic\u{FFFD}", &bump),
BumpString::from_utf16_lossy_in(v, &bump));
Sourcepub fn try_from_utf16_lossy_in(
v: &[u16],
allocator: A,
) -> Result<Self, AllocError>
pub fn try_from_utf16_lossy_in( v: &[u16], allocator: A, ) -> Result<Self, AllocError>
Decode a UTF-16–encoded slice v
into a BumpString
, replacing
invalid data with the replacement character (U+FFFD
).
§Errors
Errors if the allocation fails.
§Examples
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0xDD1E, 0x0069, 0x0063,
0xD834];
assert_eq!(BumpString::try_from_str_in("𝄞mus\u{FFFD}ic\u{FFFD}", &bump)?,
BumpString::try_from_utf16_lossy_in(v, &bump)?);
Sourcepub fn try_push_str(&mut self, string: &str) -> Result<(), AllocError>
pub fn try_push_str(&mut self, string: &str) -> Result<(), AllocError>
Sourcepub fn insert(&mut self, idx: usize, ch: char)
pub fn insert(&mut self, idx: usize, ch: char)
Inserts a character into this string at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
§Panics
Panics if the allocation fails.
Panics if idx
is larger than the string’s length, or if it does not
lie on a char
boundary.
§Examples
let mut s = BumpString::with_capacity_in(3, &bump);
s.insert(0, 'f');
s.insert(1, 'o');
s.insert(2, 'o');
assert_eq!("foo", s);
Sourcepub fn try_insert(&mut self, idx: usize, ch: char) -> Result<(), AllocError>
pub fn try_insert(&mut self, idx: usize, ch: char) -> Result<(), AllocError>
Inserts a character into this string at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
§Panics
Panics if idx
is larger than the string’s length, or if it does not
lie on a char
boundary.
§Errors
Errors if the allocation fails.
§Examples
let mut s = BumpString::try_with_capacity_in(3, &bump)?;
s.try_insert(0, 'f')?;
s.try_insert(1, 'o')?;
s.try_insert(2, 'o')?;
assert_eq!("foo", s);
Sourcepub fn insert_str(&mut self, idx: usize, string: &str)
pub fn insert_str(&mut self, idx: usize, string: &str)
Inserts a string slice into this string at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
§Panics
Panics if the allocation fails.
Panics if idx
is larger than the string’s length, or if it does not
lie on a char
boundary.
§Examples
let mut s = BumpString::from_str_in("bar", &bump);
s.insert_str(0, "foo");
assert_eq!("foobar", s);
Sourcepub fn try_insert_str(
&mut self,
idx: usize,
string: &str,
) -> Result<(), AllocError>
pub fn try_insert_str( &mut self, idx: usize, string: &str, ) -> Result<(), AllocError>
Inserts a string slice into this string at a byte position.
This is an O(n) operation as it requires copying every element in the buffer.
§Panics
Panics if idx
is larger than the string’s length, or if it does not
lie on a char
boundary.
§Errors
Errors if the allocation fails.
§Examples
let mut s = BumpString::try_from_str_in("bar", &bump)?;
s.try_insert_str(0, "foo")?;
assert_eq!("foobar", s);
Sourcepub fn extend_from_within<R>(&mut self, src: R)where
R: RangeBounds<usize>,
pub fn extend_from_within<R>(&mut self, src: R)where
R: RangeBounds<usize>,
Copies elements from src
range to the end of the string.
§Panics
Panics if the allocation fails.
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Examples
let mut string = BumpString::from_str_in("abcde", &bump);
string.extend_from_within(2..);
assert_eq!(string, "abcdecde");
string.extend_from_within(..2);
assert_eq!(string, "abcdecdeab");
string.extend_from_within(4..8);
assert_eq!(string, "abcdecdeabecde");
Sourcepub fn try_extend_from_within<R>(&mut self, src: R) -> Result<(), AllocError>where
R: RangeBounds<usize>,
pub fn try_extend_from_within<R>(&mut self, src: R) -> Result<(), AllocError>where
R: RangeBounds<usize>,
Copies elements from src
range to the end of the string.
§Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Errors
Errors if the allocation fails.
§Examples
let mut string = BumpString::try_from_str_in("abcde", &bump)?;
string.try_extend_from_within(2..)?;
assert_eq!(string, "abcdecde");
string.try_extend_from_within(..2)?;
assert_eq!(string, "abcdecdeab");
string.try_extend_from_within(4..8)?;
assert_eq!(string, "abcdecdeabecde");
Sourcepub fn extend_zeroed(&mut self, additional: usize)
pub fn extend_zeroed(&mut self, additional: usize)
Sourcepub fn try_extend_zeroed(&mut self, additional: usize) -> Result<(), AllocError>
pub fn try_extend_zeroed(&mut self, additional: usize) -> Result<(), AllocError>
Sourcepub fn replace_range<R>(&mut self, range: R, replace_with: &str)where
R: RangeBounds<usize>,
pub fn replace_range<R>(&mut self, range: R, replace_with: &str)where
R: RangeBounds<usize>,
Removes the specified range in the string, and replaces it with the given string. The given string doesn’t need to be the same length as the range.
§Panics
Panics if the allocation fails.
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Examples
let mut s = BumpString::from_str_in("α is alpha, β is beta", &bump);
let beta_offset = s.find('β').unwrap_or(s.len());
// Replace the range up until the β from the string
s.replace_range(..beta_offset, "Α is capital alpha; ");
assert_eq!(s, "Α is capital alpha; β is beta");
Sourcepub fn try_replace_range<R>(
&mut self,
range: R,
replace_with: &str,
) -> Result<(), AllocError>where
R: RangeBounds<usize>,
pub fn try_replace_range<R>(
&mut self,
range: R,
replace_with: &str,
) -> Result<(), AllocError>where
R: RangeBounds<usize>,
Removes the specified range in the string, and replaces it with the given string. The given string doesn’t need to be the same length as the range.
§Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Errors
Errors if the allocation fails.
§Examples
let mut s = BumpString::try_from_str_in("α is alpha, β is beta", &bump)?;
let beta_offset = s.find('β').unwrap_or(s.len());
// Replace the range up until the β from the string
s.try_replace_range(..beta_offset, "Α is capital alpha; ")?;
assert_eq!(s, "Α is capital alpha; β is beta");
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
bytes more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling reserve
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if capacity is already sufficient.
§Panics
Panics if the allocation fails.
§Examples
Basic usage:
let mut s = BumpString::new_in(&bump);
s.reserve(10);
assert!(s.capacity() >= 10);
This might not actually increase the capacity:
let mut s = BumpString::with_capacity_in(10, &bump);
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of at least 10
let capacity = s.capacity();
assert_eq!(2, s.len());
assert!(capacity >= 10);
// Since we already have at least an extra 8 capacity, calling this...
s.reserve(8);
// ... doesn't actually increase.
assert_eq!(capacity, s.capacity());
Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), AllocError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), AllocError>
Reserves capacity for at least additional
bytes more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling reserve
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if capacity is already sufficient.
§Errors
Errors if the allocation fails.
§Examples
Basic usage:
let mut s = BumpString::new_in(&bump);
s.try_reserve(10)?;
assert!(s.capacity() >= 10);
This might not actually increase the capacity:
let mut s = BumpString::try_with_capacity_in(10, &bump)?;
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of at least 10
let capacity = s.capacity();
assert_eq!(2, s.len());
assert!(capacity >= 10);
// Since we already have at least an extra 8 capacity, calling this...
s.try_reserve(8)?;
// ... doesn't actually increase.
assert_eq!(capacity, s.capacity());
Sourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Reserves the minimum capacity for at least additional
bytes more than
the current length. Unlike reserve
, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling reserve_exact
, capacity will be greater than or equal to
self.len() + additional
. Does nothing if the capacity is already
sufficient.
§Panics
Panics if the allocation fails.
§Examples
Basic usage:
let mut s = BumpString::new_in(&bump);
s.reserve_exact(10);
assert!(s.capacity() >= 10);
This might not actually increase the capacity:
let mut s = BumpString::with_capacity_in(10, &bump);
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of at least 10
let capacity = s.capacity();
assert_eq!(2, s.len());
assert!(capacity >= 10);
// Since we already have at least an extra 8 capacity, calling this...
s.reserve_exact(8);
// ... doesn't actually increase.
assert_eq!(capacity, s.capacity());
Sourcepub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), AllocError>
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), AllocError>
Reserves the minimum capacity for at least additional
bytes more than
the current length. Unlike reserve
, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling reserve_exact
, capacity will be greater than or equal to
self.len() + additional
. Does nothing if the capacity is already
sufficient.
§Errors
Errors if the allocation fails.
§Examples
Basic usage:
let mut s = BumpString::new_in(&bump);
s.try_reserve_exact(10)?;
assert!(s.capacity() >= 10);
This might not actually increase the capacity:
let mut s = BumpString::try_with_capacity_in(10, &bump)?;
s.push('a');
s.push('b');
// s now has a length of 2 and a capacity of at least 10
let capacity = s.capacity();
assert_eq!(2, s.len());
assert!(capacity >= 10);
// Since we already have at least an extra 8 capacity, calling this...
s.try_reserve_exact(8)?;
// ... doesn't actually increase.
assert_eq!(capacity, s.capacity());
Sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the string as much as possible.
This will also free space for future bump allocations iff this is the most recent allocation.
§Examples
let mut string = BumpString::with_capacity_in(10, &bump);
string.push_str("123");
assert!(string.capacity() == 10);
assert_eq!(bump.stats().allocated(), 10);
string.shrink_to_fit();
assert!(string.capacity() == 3);
assert_eq!(bump.stats().allocated(), 3);
Sourcepub fn allocator_stats(&self) -> AnyStats<'_>
pub fn allocator_stats(&self) -> AnyStats<'_>
Returns a type which provides statistics about the memory usage of the bump allocator.
This is equivalent to calling .allocator().stats()
.
This merely exists for api parity with Mut*
collections which can’t have a allocator
method.
Source§impl<'a, A: BumpAllocatorScope<'a>> BumpString<A>
impl<'a, A: BumpAllocatorScope<'a>> BumpString<A>
Sourcepub fn into_str(self) -> &'a mut str
pub fn into_str(self) -> &'a mut str
Converts this BumpString
into &str
that is live for this bump scope.
Sourcepub fn into_boxed_str(self) -> BumpBox<'a, str> ⓘ
pub fn into_boxed_str(self) -> BumpBox<'a, str> ⓘ
Converts a BumpString
into a BumpBox<str>
.
Sourcepub fn into_fixed_string(self) -> FixedBumpString<'a>
pub fn into_fixed_string(self) -> FixedBumpString<'a>
Sourcepub fn into_cstr(self) -> &'a CStr
pub fn into_cstr(self) -> &'a CStr
Converts this BumpString
into &CStr
that is live for this bump scope.
If the string contains a '\0'
then the CStr
will stop there.
§Panics
Panics if the allocation fails.
§Examples
let hello = BumpString::from_str_in("Hello, world!", &bump);
assert_eq!(hello.into_cstr(), c"Hello, world!");
let abc0def = BumpString::from_str_in("abc\0def", &bump);
assert_eq!(abc0def.into_cstr(), c"abc");
Sourcepub fn try_into_cstr(self) -> Result<&'a CStr, AllocError>
pub fn try_into_cstr(self) -> Result<&'a CStr, AllocError>
Converts this BumpString
into &CStr
that is live for this bump scope.
If the string contains a '\0'
then the CStr
will stop there.
§Errors
Errors if the allocation fails.
§Examples
let hello = BumpString::try_from_str_in("Hello, world!", &bump)?; ///
assert_eq!(hello.try_into_cstr()?, c"Hello, world!");
let abc0def = BumpString::try_from_str_in("abc\0def", &bump)?;
assert_eq!(abc0def.try_into_cstr()?, c"abc");
Sourcepub fn from_parts(string: FixedBumpString<'a>, allocator: A) -> Self
pub fn from_parts(string: FixedBumpString<'a>, allocator: A) -> Self
Creates a BumpString
from its parts.
The provided bump
does not have to be the one the fixed_string
was allocated in.
let mut fixed_string = FixedBumpString::with_capacity_in(3, &bump);
fixed_string.push('a');
fixed_string.push('b');
fixed_string.push('c');
let mut string = BumpString::from_parts(fixed_string, &bump);
string.push('d');
string.push('e');
assert_eq!(string, "abcde");
Sourcepub fn into_parts(self) -> (FixedBumpString<'a>, A)
pub fn into_parts(self) -> (FixedBumpString<'a>, A)
Turns this BumpString
into its parts.
let mut string = BumpString::new_in(&bump);
string.reserve(10);
string.push('a');
let mut fixed_string = string.into_parts().0;
assert_eq!(fixed_string.capacity(), 10);
assert_eq!(fixed_string, "a");
Methods from Deref<Target = str>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if self
has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());
1.9.0 · Sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
Sourcepub fn floor_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn floor_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not exceeding index
where is_char_boundary(x)
is true
.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");
Sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn ceil_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not below index
where is_char_boundary(x)
is true
.
If index
is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary
. See that method
for more details.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");
1.20.0 · Sourcepub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
Converts a mutable string slice to a mutable byte slice.
§Safety
The caller must ensure that the content of the slice is valid UTF-8
before the borrow ends and the underlying str
is used.
Use of a str
whose contents are not valid UTF-8 is undefined behavior.
§Examples
Basic usage:
let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };
assert_eq!(b"Hello", bytes);
Mutability:
let mut s = String::from("🗻∈🌏");
unsafe {
let bytes = s.as_bytes_mut();
bytes[0] = 0xF0;
bytes[1] = 0x9F;
bytes[2] = 0x8D;
bytes[3] = 0x94;
}
assert_eq!("🍔∈🌏", s);
1.0.0 · Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
§Examples
let s = "Hello";
let ptr = s.as_ptr();
1.36.0 · Sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Converts a mutable string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
It is your responsibility to make sure that the string slice only gets modified in a way that it remains valid UTF-8.
1.20.0 · Sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
1.20.0 · Sourcepub fn get_mut<I>(
&mut self,
i: I,
) -> Option<&mut <I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get_mut<I>(
&mut self,
i: I,
) -> Option<&mut <I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a mutable subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
§Examples
let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
assert_eq!("hello", v);
{
let s = v.get_mut(0..2);
let s = s.map(|s| {
s.make_ascii_uppercase();
&*s
});
assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);
1.20.0 · Sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
1.20.0 · Sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I,
) -> &mut <I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I,
) -> &mut <I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns a mutable, unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
§Examples
let mut v = String::from("🗻∈🌏");
unsafe {
assert_eq!("🗻", v.get_unchecked_mut(0..4));
assert_eq!("∈", v.get_unchecked_mut(4..7));
assert_eq!("🌏", v.get_unchecked_mut(7..11));
}
1.0.0 · Sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end)
insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
1.5.0 · Sourcepub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize,
) -> &mut str
👎Deprecated since 1.29.0: use get_unchecked_mut(begin..end)
instead
pub unsafe fn slice_mut_unchecked( &mut self, begin: usize, end: usize, ) -> &mut str
get_unchecked_mut(begin..end)
insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and IndexMut
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get an immutable string slice instead, see the
slice_unchecked
method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
1.4.0 · Sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked
.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
1.4.0 · Sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
Divides one mutable string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at
method.
§Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_mut_checked
.
§Examples
let mut s = "Per Martin-Löf".to_string();
{
let (first, last) = s.split_at_mut(3);
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid
, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None
if that’s not the case.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
1.80.0 · Sourcepub fn split_at_mut_checked(
&mut self,
mid: usize,
) -> Option<(&mut str, &mut str)>
pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut str, &mut str)>
Divides one mutable string slice into two at an index.
The argument, mid
, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None
if that’s not the case.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at_checked
method.
§Examples
let mut s = "Per Martin-Löf".to_string();
if let Some((first, last)) = s.split_at_mut_checked(3) {
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
1.0.0 · Sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
Remember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
1.0.0 · Sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
Remember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
1.0.0 · Sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
1.1.0 · Sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);
1.34.0 · Sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
This uses the same definition as char::is_ascii_whitespace
.
To split by Unicode Whitespace
instead, use split_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
Various kinds of ASCII whitespace are considered
(see char::is_ascii_whitespace
):
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);
1.0.0 · Sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n
) or
sequences of a carriage return followed by a line feed (\r\n
).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r
) not immediately followed by a
line feed (\n
) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());
The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
1.0.0 · Sourcepub fn lines_any(&self) -> LinesAny<'_>
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
Returns an iterator over the lines of a string.
1.8.0 · Sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16
over the string encoded
as native endian UTF-16 (without byte-order mark).
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);
1.0.0 · Sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
1.0.0 · Sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, in which case this function will return true if
the &str
is a prefix of this string slice.
The pattern can also be a char
, a slice of char
s, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of char
s.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1.0.0 · Sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
1.0.0 · Sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
1.0.0 · Sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
1.0.0 · Sourcepub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace
for this behavior.
1.51.0 · Sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split
in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1.0.0 · Sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
1.0.0 · Sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
1.0.0 · Sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
Returns an iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
1.0.0 · Sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
1.0.0 · Sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
1.52.0 · Sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1.52.0 · Sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1.2.0 · Sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
1.2.0 · Sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
1.5.0 · Sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
1.5.0 · Sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
Returns an iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
1.0.0 · Sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());
1.30.0 · Sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());
Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
1.30.0 · Sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());
Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
1.0.0 · Sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
1.0.0 · Sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
1.0.0 · Sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
1.30.0 · Sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
1.45.0 · Sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns the substring after the prefix,
wrapped in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
1.45.0 · Sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
1.30.0 · Sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
1.0.0 · Sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
§Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage:
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
Using the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char
)If this string slice is_ascii
, returns it as a slice
of ASCII characters, otherwise returns None
.
Sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char
)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char
)Converts this string slice into a slice of ASCII characters, without checking whether they are valid.
§Safety
Every character in this string must be ASCII, or else this is UB.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
1.23.0 · Sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
§Examples
let mut s = String::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
1.23.0 · Sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
§Examples
let mut s = String::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");
1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");
1.80.0 · Sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");
1.34.0 · Sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Returns an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_debug());
Both are equivalent to:
println!("❤\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
1.34.0 · Sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Returns an iterator that escapes each char in self
with char::escape_default
.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_default());
Both are equivalent to:
println!("\\u{{2764}}\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
1.34.0 · Sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Returns an iterator that escapes each char in self
with char::escape_unicode
.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_unicode());
Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
Using to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
Sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range
)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range
)Returns the range that a substring points to.
Returns None
if substr
does not point within self
.
Unlike str::find
, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr
is derived from.
This is useful for extending str::split
and similar methods.
Note that this method may return false positives (typically either
Some(0..0)
or Some(self.len()..self.len())
) if substr
is a
zero-length str
that points at the beginning or end of another,
independent, str
.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));
Sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str
)
pub fn as_str(&self) -> &str
str_as_str
)Returns the same string as a string slice &str
.
This method is redundant when used directly on &str
, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str>
or Arc<str>
.
1.0.0 · Sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
1.16.0 · Sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
§Examples
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
1.2.0 · Sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());
A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());
1.2.0 · Sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());
Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());
One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());
1.16.0 · Sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String
by repeating a string n
times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
Trait Implementations§
Source§impl<A: BumpAllocator> Add<&str> for BumpString<A>
Implements the +
operator for concatenating two strings.
impl<A: BumpAllocator> Add<&str> for BumpString<A>
Implements the +
operator for concatenating two strings.
This consumes the BumpString
on the left-hand side and re-uses its buffer (growing it if
necessary). This is done to avoid allocating a new BumpString
and copying the entire contents on
every operation, which would lead to O(n^2) running time when building an n-byte string by
repeated concatenation.
The string on the right-hand side is only borrowed; its contents are copied into the returned
BumpString
.
§Examples
Concatenating two BumpString
s takes the first by value and borrows the second:
let a = BumpString::from_str_in("hello", &bump);
let b = BumpString::from_str_in(" world", &bump);
let c = a + &b;
// `a` is moved and can no longer be used here.
If you want to keep using the first BumpString
, you can clone it and append to the clone instead:
let a = BumpString::from_str_in("hello", &bump);
let b = BumpString::from_str_in(" world", &bump);
let c = a.clone() + &b;
// `a` is still valid here.
Concatenating &str
slices can be done by converting the first to a BumpString
:
let a = "hello";
let b = " world";
let c = BumpString::from_str_in(a, &bump) + b;
Source§impl<A: BumpAllocator> AddAssign<&str> for BumpString<A>
impl<A: BumpAllocator> AddAssign<&str> for BumpString<A>
Source§fn add_assign(&mut self, rhs: &str)
fn add_assign(&mut self, rhs: &str)
+=
operation. Read moreSource§impl<A: BumpAllocator> AsMut<str> for BumpString<A>
impl<A: BumpAllocator> AsMut<str> for BumpString<A>
Source§impl<A: BumpAllocator> AsRef<str> for BumpString<A>
impl<A: BumpAllocator> AsRef<str> for BumpString<A>
Source§impl<A: BumpAllocator> Borrow<str> for BumpString<A>
impl<A: BumpAllocator> Borrow<str> for BumpString<A>
Source§impl<A: BumpAllocator> BorrowMut<str> for BumpString<A>
impl<A: BumpAllocator> BorrowMut<str> for BumpString<A>
Source§fn borrow_mut(&mut self) -> &mut str
fn borrow_mut(&mut self) -> &mut str
Source§impl<A: BumpAllocator + Clone> Clone for BumpString<A>
impl<A: BumpAllocator + Clone> Clone for BumpString<A>
Source§impl<A: BumpAllocator> Debug for BumpString<A>
impl<A: BumpAllocator> Debug for BumpString<A>
Source§impl<A: BumpAllocator + Default> Default for BumpString<A>
impl<A: BumpAllocator + Default> Default for BumpString<A>
Source§impl<A: BumpAllocator> Deref for BumpString<A>
impl<A: BumpAllocator> Deref for BumpString<A>
Source§impl<A: BumpAllocator> DerefMut for BumpString<A>
impl<A: BumpAllocator> DerefMut for BumpString<A>
Source§impl<'de, A: BumpAllocator> DeserializeSeed<'de> for &mut BumpString<A>
Available on crate feature serde
only.
impl<'de, A: BumpAllocator> DeserializeSeed<'de> for &mut BumpString<A>
serde
only.Source§impl<A: BumpAllocator> Display for BumpString<A>
impl<A: BumpAllocator> Display for BumpString<A>
Source§impl<A: BumpAllocator> Drop for BumpString<A>
impl<A: BumpAllocator> Drop for BumpString<A>
Source§impl<'s, A: BumpAllocator> Extend<&'s char> for BumpString<A>
impl<'s, A: BumpAllocator> Extend<&'s char> for BumpString<A>
Source§fn extend<I: IntoIterator<Item = &'s char>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = &'s char>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<'s, A: BumpAllocator> Extend<&'s str> for BumpString<A>
impl<'s, A: BumpAllocator> Extend<&'s str> for BumpString<A>
Source§fn extend<T: IntoIterator<Item = &'s str>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = &'s str>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<A: BumpAllocator> Extend<char> for BumpString<A>
impl<A: BumpAllocator> Extend<char> for BumpString<A>
Source§fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<A: BumpAllocator> From<BumpString<A>> for String
Available on crate feature alloc
only.
impl<A: BumpAllocator> From<BumpString<A>> for String
alloc
only.Source§fn from(value: BumpString<A>) -> Self
fn from(value: BumpString<A>) -> Self
Source§impl<A: BumpAllocator> Hash for BumpString<A>
impl<A: BumpAllocator> Hash for BumpString<A>
Source§impl<A: BumpAllocator> Ord for BumpString<A>
impl<A: BumpAllocator> Ord for BumpString<A>
Source§impl<A: BumpAllocator> PartialEq<&mut str> for BumpString<A>
impl<A: BumpAllocator> PartialEq<&mut str> for BumpString<A>
Source§impl<A: BumpAllocator> PartialEq<&str> for BumpString<A>
impl<A: BumpAllocator> PartialEq<&str> for BumpString<A>
Source§impl<A: BumpAllocator> PartialEq<BumpString<A>> for &mut str
impl<A: BumpAllocator> PartialEq<BumpString<A>> for &mut str
Source§fn eq(&self, other: &BumpString<A>) -> bool
fn eq(&self, other: &BumpString<A>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A>) -> bool
fn ne(&self, other: &BumpString<A>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A: BumpAllocator> PartialEq<BumpString<A>> for &str
impl<A: BumpAllocator> PartialEq<BumpString<A>> for &str
Source§fn eq(&self, other: &BumpString<A>) -> bool
fn eq(&self, other: &BumpString<A>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A>) -> bool
fn ne(&self, other: &BumpString<A>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A: BumpAllocator> PartialEq<BumpString<A>> for Cow<'_, str>
Available on crate feature alloc
only.
impl<A: BumpAllocator> PartialEq<BumpString<A>> for Cow<'_, str>
alloc
only.Source§fn eq(&self, other: &BumpString<A>) -> bool
fn eq(&self, other: &BumpString<A>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A>) -> bool
fn ne(&self, other: &BumpString<A>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A: BumpAllocator> PartialEq<BumpString<A>> for String
Available on crate feature alloc
only.
impl<A: BumpAllocator> PartialEq<BumpString<A>> for String
alloc
only.Source§fn eq(&self, other: &BumpString<A>) -> bool
fn eq(&self, other: &BumpString<A>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A>) -> bool
fn ne(&self, other: &BumpString<A>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A: BumpAllocator> PartialEq<BumpString<A>> for str
impl<A: BumpAllocator> PartialEq<BumpString<A>> for str
Source§fn eq(&self, other: &BumpString<A>) -> bool
fn eq(&self, other: &BumpString<A>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A>) -> bool
fn ne(&self, other: &BumpString<A>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A1: BumpAllocator, A2: BumpAllocator> PartialEq<BumpString<A2>> for BumpString<A1>
impl<A1: BumpAllocator, A2: BumpAllocator> PartialEq<BumpString<A2>> for BumpString<A1>
Source§fn eq(&self, other: &BumpString<A2>) -> bool
fn eq(&self, other: &BumpString<A2>) -> bool
self
and other
values to be equal, and is used by ==
.Source§fn ne(&self, other: &BumpString<A2>) -> bool
fn ne(&self, other: &BumpString<A2>) -> bool
!=
. The default implementation is almost always sufficient,
and should not be overridden without very good reason.Source§impl<A: BumpAllocator> PartialEq<Cow<'_, str>> for BumpString<A>
Available on crate feature alloc
only.
impl<A: BumpAllocator> PartialEq<Cow<'_, str>> for BumpString<A>
alloc
only.Source§impl<A: BumpAllocator> PartialEq<String> for BumpString<A>
Available on crate feature alloc
only.
impl<A: BumpAllocator> PartialEq<String> for BumpString<A>
alloc
only.Source§impl<A: BumpAllocator> PartialEq<str> for BumpString<A>
impl<A: BumpAllocator> PartialEq<str> for BumpString<A>
Source§impl<A: BumpAllocator> PartialOrd for BumpString<A>
impl<A: BumpAllocator> PartialOrd for BumpString<A>
Source§impl<A: BumpAllocator> Serialize for BumpString<A>
Available on crate feature serde
only.
impl<A: BumpAllocator> Serialize for BumpString<A>
serde
only.Source§impl<A: BumpAllocator> Visitor<'_> for &mut BumpString<A>
Available on crate feature serde
only.
impl<A: BumpAllocator> Visitor<'_> for &mut BumpString<A>
serde
only.Source§fn expecting(&self, formatter: &mut Formatter<'_>) -> Result
fn expecting(&self, formatter: &mut Formatter<'_>) -> Result
Source§fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>where
E: Error,
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>where
E: Error,
Source§fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>where
E: Error,
fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>where
E: Error,
Source§fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>where
E: Error,
fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>where
E: Error,
i8
. Read moreSource§fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>where
E: Error,
fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>where
E: Error,
i16
. Read moreSource§fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>where
E: Error,
fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>where
E: Error,
i32
. Read moreSource§fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>where
E: Error,
fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>where
E: Error,
i64
. Read moreSource§fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>where
E: Error,
fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>where
E: Error,
i128
. Read moreSource§fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>where
E: Error,
fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>where
E: Error,
u8
. Read moreSource§fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>where
E: Error,
fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>where
E: Error,
u16
. Read moreSource§fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>where
E: Error,
fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>where
E: Error,
u32
. Read moreSource§fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>where
E: Error,
fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>where
E: Error,
u64
. Read moreSource§fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>where
E: Error,
fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>where
E: Error,
u128
. Read moreSource§fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>where
E: Error,
fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>where
E: Error,
f32
. Read moreSource§fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>where
E: Error,
fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>where
E: Error,
f64
. Read moreSource§fn visit_char<E>(self, v: char) -> Result<Self::Value, E>where
E: Error,
fn visit_char<E>(self, v: char) -> Result<Self::Value, E>where
E: Error,
char
. Read moreSource§fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>where
E: Error,
fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>where
E: Error,
Deserializer
. Read moreSource§fn visit_string<E>(self, v: String) -> Result<Self::Value, E>where
E: Error,
fn visit_string<E>(self, v: String) -> Result<Self::Value, E>where
E: Error,
Visitor
. Read moreSource§fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>where
E: Error,
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>where
E: Error,
Source§fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>where
E: Error,
fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>where
E: Error,
Deserializer
. Read moreSource§fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>where
E: Error,
fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>where
E: Error,
Visitor
. Read moreSource§fn visit_none<E>(self) -> Result<Self::Value, E>where
E: Error,
fn visit_none<E>(self) -> Result<Self::Value, E>where
E: Error,
Source§fn visit_some<D>(
self,
deserializer: D,
) -> Result<Self::Value, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn visit_some<D>(
self,
deserializer: D,
) -> Result<Self::Value, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§fn visit_unit<E>(self) -> Result<Self::Value, E>where
E: Error,
fn visit_unit<E>(self) -> Result<Self::Value, E>where
E: Error,
()
. Read more