Struct btree_slab::generic::set::BTreeSet[][src]

pub struct BTreeSet<T, C> { /* fields omitted */ }

A set based on a B-Tree.

See BTreeMap’s documentation for a detailed discussion of this collection’s performance benefits and drawbacks.

It is a logic error for an item to be modified in such a way that the item’s ordering relative to any other item, as determined by the Ord trait, changes while it is in the set. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

Implementations

impl<T, C> BTreeSet<T, C>[src]

pub fn new() -> Self where
    C: Default
[src]

Makes a new, empty BTreeSet.

Example

use btree_slab::BTreeSet;

let mut set: BTreeSet<i32> = BTreeSet::new();

pub fn len(&self) -> usize[src]

Returns the number of elements in the set.

Example

use btree_slab::BTreeSet;

let mut v = BTreeSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns true if the set contains no elements.

Example

use btree_slab::BTreeSet;

let mut v = BTreeSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());

impl<T: Ord, C: Slab<Node<T, ()>>> BTreeSet<T, C>[src]

pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
    T: Borrow<Q>,
    Q: Ord
[src]

Returns true if the set contains a value.

The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.

Example

use btree_slab::BTreeSet;

let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);

pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> where
    T: Borrow<Q>,
    Q: Ord
[src]

Returns a reference to the value in the set, if any, that is equal to the given value.

The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.

Example

use btree_slab::BTreeSet;

let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);

pub fn iter(&self) -> Iter<'_, T, C>

Notable traits for Iter<'a, T, C>

impl<'a, T, C: Slab<Node<T, ()>>> Iterator for Iter<'a, T, C> type Item = &'a T;
[src]

Gets an iterator that visits the values in the BTreeSet in ascending order.

Examples

use btree_slab::BTreeSet;

let set: BTreeSet<usize> = [1, 2, 3].iter().cloned().collect();
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);

Values returned by the iterator are returned in ascending order:

use btree_slab::BTreeSet;

let set: BTreeSet<usize> = [3, 1, 2].iter().cloned().collect();
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);

pub fn range<K: ?Sized, R>(&self, range: R) -> Range<'_, T, C>

Notable traits for Range<'a, T, C>

impl<'a, T, C: Slab<Node<T, ()>>> Iterator for Range<'a, T, C> type Item = &'a T;
where
    K: Ord,
    T: Borrow<K>,
    R: RangeBounds<K>, 
[src]

Constructs a double-ended iterator over a sub-range of elements in the set. The simplest way is to use the range syntax min..max, thus range(min..max) will yield elements from min (inclusive) to max (exclusive). The range may also be entered as (Bound<T>, Bound<T>), so for example range((Excluded(4), Included(10))) will yield a left-exclusive, right-inclusive range from 4 to 10.

Example

use btree_slab::BTreeSet;
use std::ops::Bound::Included;

let mut set = BTreeSet::new();
set.insert(3);
set.insert(5);
set.insert(8);
for &elem in set.range((Included(&4), Included(&8))) {
    println!("{}", elem);
}
assert_eq!(Some(&5), set.range(4..).next());

pub fn union<'a, D: Slab<Node<T, ()>>>(
    &'a self,
    other: &'a BTreeSet<T, D>
) -> Union<'a, T, C, D>

Notable traits for Union<'a, T, C, D>

impl<'a, T: Ord, C: Slab<Node<T, ()>>, D: Slab<Node<T, ()>>> Iterator for Union<'a, T, C, D> type Item = &'a T;
[src]

Visits the values representing the union, i.e., all the values in self or other, without duplicates, in ascending order.

Example

use btree_slab::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);

let mut b = BTreeSet::new();
b.insert(2);

let union: Vec<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2]);

pub fn intersection<'a, D: Slab<Node<T, ()>>>(
    &'a self,
    other: &'a BTreeSet<T, D>
) -> Intersection<'a, T, C, D>

Notable traits for Intersection<'a, T, C, D>

impl<'a, T: Ord, C: Slab<Node<T, ()>>, D: Slab<Node<T, ()>>> Iterator for Intersection<'a, T, C, D> type Item = &'a T;
[src]

Visits the values representing the intersection, i.e., the values that are both in self and other, in ascending order.

Example

use btree_slab::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let intersection: Vec<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2]);

pub fn difference<'a, D: Slab<Node<T, ()>>>(
    &'a self,
    other: &'a BTreeSet<T, D>
) -> Difference<'a, T, C, D>

Notable traits for Difference<'a, T, C, D>

impl<'a, T: Ord, C: Slab<Node<T, ()>>, D: Slab<Node<T, ()>>> Iterator for Difference<'a, T, C, D> type Item = &'a T;
[src]

Visits the values representing the difference, i.e., the values that are in self but not in other, in ascending order.

Example

use btree_slab::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let diff: Vec<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1]);

pub fn symmetric_difference<'a, D: Slab<Node<T, ()>>>(
    &'a self,
    other: &'a BTreeSet<T, D>
) -> SymmetricDifference<'a, T, C, D>

Notable traits for SymmetricDifference<'a, T, C, D>

impl<'a, T: Ord, C: Slab<Node<T, ()>>, D: Slab<Node<T, ()>>> Iterator for SymmetricDifference<'a, T, C, D> type Item = &'a T;
[src]

Visits the values representing the symmetric difference, i.e., the values that are in self or in other but not in both, in ascending order.

Example

use btree_slab::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect();
assert_eq!(sym_diff, [1, 3]);

pub fn is_disjoint<D: Slab<Node<T, ()>>>(&self, other: &BTreeSet<T, D>) -> bool[src]

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

Example

use btree_slab::BTreeSet;

let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = BTreeSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);

pub fn is_subset<D: Slab<Node<T, ()>>>(&self, other: &BTreeSet<T, D>) -> bool[src]

Returns true if the set is a subset of another, i.e., other contains at least all the values in self.

Example

use btree_slab::BTreeSet;

let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = BTreeSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);

pub fn is_superset<D: Slab<Node<T, ()>>>(&self, other: &BTreeSet<T, D>) -> bool[src]

Returns true if the set is a superset of another, i.e., self contains at least all the values in other.

Example

use btree_slab::BTreeSet;

let sub: BTreeSet<_> = [1, 2].iter().cloned().collect();
let mut set = BTreeSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);

pub fn first(&self) -> Option<&T>[src]

Returns a reference to the first value in the set, if any. This value is always the minimum of all values in the set.

Example

use btree_slab::BTreeSet;

let mut map = BTreeSet::new();
assert_eq!(map.first(), None);
map.insert(1);
assert_eq!(map.first(), Some(&1));
map.insert(2);
assert_eq!(map.first(), Some(&1));

pub fn last(&self) -> Option<&T>[src]

Returns a reference to the last value in the set, if any. This value is always the maximum of all values in the set.

Example

use btree_slab::BTreeSet;

let mut map = BTreeSet::new();
assert_eq!(map.first(), None);
map.insert(1);
assert_eq!(map.last(), Some(&1));
map.insert(2);
assert_eq!(map.last(), Some(&2));

impl<T: Ord, C: SlabMut<Node<T, ()>>> BTreeSet<T, C>[src]

pub fn clear(&mut self) where
    C: Clear
[src]

Clears the set, removing all values.

Examples

use btree_slab::BTreeSet;

let mut v = BTreeSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());

pub fn insert(&mut self, element: T) -> bool where
    T: Ord
[src]

Adds a value to the set.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned, and the entry is not updated. See the module-level documentation for more.

Example

use btree_slab::BTreeSet;

let mut set = BTreeSet::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);

pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
    T: Borrow<Q>,
    Q: Ord
[src]

Removes a value from the set. Returns whether the value was present in the set.

The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.

Example

use btree_slab::BTreeSet;

let mut set = BTreeSet::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);

pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> where
    T: Borrow<Q>,
    Q: Ord
[src]

Removes and returns the value in the set, if any, that is equal to the given one.

The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.

Examples

use btree_slab::BTreeSet;

let mut set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);

pub fn replace(&mut self, value: T) -> Option<T>[src]

Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.

Example

use btree_slab::BTreeSet;

let mut set = BTreeSet::new();
set.insert(Vec::<i32>::new());

assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);

pub fn pop_first(&mut self) -> Option<T>[src]

Removes the first value from the set and returns it, if any. The first value is always the minimum value in the set.

Example

use btree_slab::BTreeSet;

let mut set = BTreeSet::new();

set.insert(1);
while let Some(n) = set.pop_first() {
    assert_eq!(n, 1);
}
assert!(set.is_empty());

pub fn pop_last(&mut self) -> Option<T>[src]

Removes the last value from the set and returns it, if any. The last value is always the maximum value in the set.

Example

use btree_slab::BTreeSet;

let mut set = BTreeSet::new();

set.insert(1);
while let Some(n) = set.pop_last() {
    assert_eq!(n, 1);
}
assert!(set.is_empty());

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(&T) -> bool
[src]

Retains only the elements specified by the predicate.

In other words, remove all elements e such that f(&e) returns false.

Example

use btree_slab::BTreeSet;

let xs = [1, 2, 3, 4, 5, 6];
let mut set: BTreeSet<i32> = xs.iter().cloned().collect();
// Keep only the even numbers.
set.retain(|&k| k % 2 == 0);
assert!(set.iter().eq([2, 4, 6].iter()));

pub fn append(&mut self, other: &mut Self) where
    C: Default
[src]

Moves all elements from other into Self, leaving other empty.

Example

use btree_slab::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);
a.insert(3);

let mut b = BTreeSet::new();
b.insert(3);
b.insert(4);
b.insert(5);

a.append(&mut b);

assert_eq!(a.len(), 5);
assert_eq!(b.len(), 0);

assert!(a.contains(&1));
assert!(a.contains(&2));
assert!(a.contains(&3));
assert!(a.contains(&4));
assert!(a.contains(&5));

pub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, C, F>

Notable traits for DrainFilter<'a, T, C, F>

impl<'a, T, C: SlabMut<Node<T, ()>>, F> Iterator for DrainFilter<'a, T, C, F> where
    F: FnMut(&T) -> bool
type Item = T;
where
    F: 'a + FnMut(&T) -> bool
[src]

Creates an iterator which uses a closure to determine if a value should be removed.

If the closure returns true, then the value is removed and yielded. If the closure returns false, the value will remain in the list and will not be yielded by the iterator.

If the iterator is only partially consumed or not consumed at all, each of the remaining values will still be subjected to the closure and removed and dropped if it returns true.

It is unspecified how many more values will be subjected to the closure if a panic occurs in the closure, or if a panic occurs while dropping a value, or if the DrainFilter itself is leaked.

Example

Splitting a set into even and odd values, reusing the original set:

use btree_slab::BTreeSet;

let mut set: BTreeSet<i32> = (0..8).collect();
let evens: BTreeSet<_> = set.drain_filter(|v| v % 2 == 0).collect();
let odds = set;
assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![0, 2, 4, 6]);
assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 7]);

Trait Implementations

impl<T: Clone, C: Clone> Clone for BTreeSet<T, C>[src]

impl<T: Eq, C: Slab<Node<T, ()>>> Eq for BTreeSet<T, C>[src]

impl<'a, T: Ord + Copy, C: SlabMut<Node<T, ()>>> Extend<&'a T> for BTreeSet<T, C>[src]

impl<T: Ord, C: SlabMut<Node<T, ()>>> Extend<T> for BTreeSet<T, C>[src]

impl<T: Ord, C: SlabMut<Node<T, ()>> + Default> FromIterator<T> for BTreeSet<T, C>[src]

impl<T: Hash, C: Slab<Node<T, ()>>> Hash for BTreeSet<T, C>[src]

impl<T, C: SlabMut<Node<T, ()>>> IntoIterator for BTreeSet<T, C>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T, C>

Which kind of iterator are we turning this into?

impl<T: Ord, C: Slab<Node<T, ()>>> Ord for BTreeSet<T, C>[src]

impl<T, L: PartialEq<T>, C: Slab<Node<T, ()>>, D: Slab<Node<L, ()>>> PartialEq<BTreeSet<L, D>> for BTreeSet<T, C>[src]

impl<T, L: PartialOrd<T>, C: Slab<Node<T, ()>>, D: Slab<Node<L, ()>>> PartialOrd<BTreeSet<L, D>> for BTreeSet<T, C>[src]

Auto Trait Implementations

impl<T, C> RefUnwindSafe for BTreeSet<T, C> where
    C: RefUnwindSafe,
    T: RefUnwindSafe

impl<T, C> Send for BTreeSet<T, C> where
    C: Send,
    T: Send

impl<T, C> Sync for BTreeSet<T, C> where
    C: Sync,
    T: Sync

impl<T, C> Unpin for BTreeSet<T, C> where
    C: Unpin,
    T: Unpin

impl<T, C> UnwindSafe for BTreeSet<T, C> where
    C: UnwindSafe,
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.