1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use bracket_algorithm_traits::prelude::BaseMap;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap};
use std::convert::TryInto;

/// Bail out if the A* search exceeds this many steps.
const MAX_ASTAR_STEPS: usize = 65536;

/// Request an A-Star search. The start and end are specified as index numbers (compatible with your
/// BaseMap implementation), and it requires access to your map so as to call distance and exit determinations.
pub fn a_star_search<T>(start: T, end: T, map: &dyn BaseMap) -> NavigationPath
where
    T: TryInto<usize>,
{
    AStar::new(start.try_into().ok().unwrap(), end.try_into().ok().unwrap()).search(map)
}

/// Holds the result of an A-Star navigation query.
/// `destination` is the index of the target tile.
/// `success` is true if it reached the target, false otherwise.
/// `steps` is a vector of each step towards the target, *including* the starting position.
#[derive(Clone, Default)]
pub struct NavigationPath {
    pub destination: usize,
    pub success: bool,
    pub steps: Vec<usize>,
}

#[allow(dead_code)]
#[derive(Copy, Clone)]
/// Node is an internal step inside the A-Star path (not exposed/public). Idx is the current cell,
/// f is the total cost, g the neighbor cost, and h the heuristic cost.
/// See: https://en.wikipedia.org/wiki/A*_search_algorithm
struct Node {
    idx: usize,
    f: f32,
    g: f32,
    h: f32,
}

impl PartialEq for Node {
    fn eq(&self, other: &Self) -> bool {
        self.f == other.f
    }
}

impl Eq for Node {}

impl Ord for Node {
    fn cmp(&self, b: &Self) -> Ordering {
        b.f.partial_cmp(&self.f).unwrap()
    }
}

impl PartialOrd for Node {
    fn partial_cmp(&self, b: &Self) -> Option<Ordering> {
        b.f.partial_cmp(&self.f)
    }
}

impl NavigationPath {
    /// Makes a new (empty) NavigationPath
    pub fn new() -> NavigationPath {
        NavigationPath {
            destination: 0,
            success: false,
            steps: Vec::new(),
        }
    }
}

/// Private structure for calculating an A-Star navigation path.
struct AStar {
    start: usize,
    end: usize,
    open_list: BinaryHeap<Node>,
    closed_list: HashMap<usize, f32>,
    parents: HashMap<usize, usize>,
    step_counter: usize,
}

impl AStar {
    /// Creates a new path, with specified starting and ending indices.
    fn new(start: usize, end: usize) -> AStar {
        let mut open_list: BinaryHeap<Node> = BinaryHeap::new();
        open_list.push(Node {
            idx: start,
            f: 0.0,
            g: 0.0,
            h: 0.0,
        });

        AStar {
            start,
            end,
            open_list,
            parents: HashMap::new(),
            closed_list: HashMap::new(),
            step_counter: 0,
        }
    }

    /// Wrapper to the BaseMap's distance function.
    fn distance_to_end(&self, idx: usize, map: &dyn BaseMap) -> f32 {
        map.get_pathing_distance(idx, self.end)
    }

    /// Adds a successor; if we're at the end, marks success.
    fn add_successor(&mut self, q: Node, idx: usize, cost: f32, map: &dyn BaseMap) -> bool {
        // Did we reach our goal?
        if idx == self.end {
            self.parents.insert(idx, q.idx);
            true
        } else {
            let distance = self.distance_to_end(idx, map);
            let s = Node {
                idx,
                f: distance + cost,
                g: cost,
                h: distance,
            };

            // If a node with the same position as successor is in the open list with a lower f, skip add
            let mut should_add = true;
            for e in &self.open_list {
                if e.f < s.f && e.idx == idx {
                    should_add = false;
                }
            }

            // If a node with the same position as successor is in the closed list, with a lower f, skip add
            if should_add && self.closed_list.contains_key(&idx) && self.closed_list[&idx] < s.f {
                should_add = false;
            }

            if should_add {
                self.open_list.push(s);
                self.parents.insert(idx, q.idx);
            }

            false
        }
    }

    /// Helper function to unwrap a path once we've found the end-point.
    fn found_it(&self) -> NavigationPath {
        let mut result = NavigationPath::new();
        result.success = true;
        result.destination = self.end;

        result.steps.push(self.end);
        let mut current = self.end;
        while current != self.start {
            let parent = self.parents[&current];
            result.steps.insert(0, parent);
            current = parent;
        }

        result
    }

    /// Performs an A-Star search
    fn search(&mut self, map: &dyn BaseMap) -> NavigationPath {
        let result = NavigationPath::new();
        while !self.open_list.is_empty() && self.step_counter < MAX_ASTAR_STEPS {
            self.step_counter += 1;

            // Pop Q off of the list
            let q = self.open_list.pop().unwrap();

            // Generate successors
            let successors = map.get_available_exits(q.idx);

            for s in successors {
                if self.add_successor(q, s.0, s.1 + q.f, map) {
                    let success = self.found_it();
                    return success;
                }
            }

            if self.closed_list.contains_key(&q.idx) {
                self.closed_list.remove(&q.idx);
            }
            self.closed_list.insert(q.idx, q.f);
        }
        result
    }
}