docs.rs failed to build bitnet-inference-0.1.1
Please check the build logs for more information.
See Builds for ideas on how to fix a failed build, or Metadata for how to configure docs.rs builds.
If you believe this is docs.rs' fault, open an issue.
Please check the build logs for more information.
See Builds for ideas on how to fix a failed build, or Metadata for how to configure docs.rs builds.
If you believe this is docs.rs' fault, open an issue.
BitNet Inference
High-performance inference engine for BitNet neural networks, providing optimized model execution, batch processing, and streaming inference capabilities.
๐ฏ Purpose
bitnet-inference
provides the runtime engine for executing BitNet models:
- Model Loading: Load and manage BitNet models from various formats
- Batch Processing: Efficient batched inference for high throughput
- Streaming Inference: Real-time streaming inference for interactive applications
- Dynamic Quantization: Runtime quantization optimization
- Multi-Device Support: Seamless execution across CPU, GPU, and Neural Engine
๐ด Current Status: PLACEHOLDER ONLY
โ ๏ธ This crate is currently a placeholder and contains no implementation.
The current src/lib.rs
contains only:
//! BitNet Inference Library
//!
//! This crate provides inference utilities for BitNet models.
// Placeholder for future inference implementation
โ What Needs to be Implemented
๐ด Model Management (Not Implemented)
Model Loading and Serialization
- Model Format Support: Load models from SafeTensors, ONNX, and custom formats
- Model Validation: Validate model structure and compatibility
- Version Management: Handle different model versions and migrations
- Compression: Support for compressed model storage and loading
Model Optimization
- Graph Optimization: Optimize computation graphs for inference
- Operator Fusion: Fuse compatible operations for better performance
- Memory Layout: Optimize tensor layouts for target hardware
- Quantization Optimization: Apply runtime quantization optimizations
Model Registry
- Model Caching: Cache loaded models for reuse
- Model Versioning: Track and manage model versions
- Model Metadata: Store and retrieve model metadata
- Model Discovery: Automatic discovery of available models
๐ด Inference Engine (Not Implemented)
Core Inference Runtime
- Forward Pass: Execute model forward pass with BitNet operations
- Dynamic Shapes: Support for dynamic input shapes
- Memory Management: Efficient memory allocation during inference
- Error Handling: Robust error handling and recovery
Batch Processing
- Batch Optimization: Optimize operations for batched inputs
- Dynamic Batching: Automatically batch requests for efficiency
- Memory Pooling: Reuse memory across batch operations
- Load Balancing: Balance load across available compute resources
Streaming Inference
- Real-time Processing: Low-latency streaming inference
- Pipeline Processing: Pipeline multiple inference stages
- Asynchronous Execution: Non-blocking inference operations
- Resource Management: Manage resources for concurrent streams
๐ด Performance Optimization (Not Implemented)
Hardware Acceleration
- Multi-Device Execution: Distribute computation across devices
- GPU Acceleration: Leverage GPU for compute-intensive operations
- Neural Engine: Utilize Apple Neural Engine when available
- SIMD Optimization: Vectorized operations for CPU execution
Memory Optimization
- Memory Reuse: Reuse intermediate tensors across operations
- Memory Prefetching: Prefetch data for upcoming operations
- Garbage Collection: Efficient cleanup of temporary allocations
- Memory Pressure: Handle memory pressure gracefully
Compute Optimization
- Kernel Fusion: Fuse operations to reduce memory bandwidth
- Loop Optimization: Optimize loops for better cache utilization
- Parallel Execution: Parallelize independent operations
- Pipeline Optimization: Optimize execution pipelines
๐ด Text Generation (Not Implemented)
Generation Strategies
- Greedy Decoding: Simple greedy text generation
- Beam Search: Beam search for higher quality generation
- Sampling Methods: Top-k, top-p, and temperature sampling
- Custom Strategies: Pluggable generation strategies
Generation Control
- Length Control: Control generation length and stopping criteria
- Content Filtering: Filter generated content for safety
- Prompt Engineering: Advanced prompt processing and engineering
- Context Management: Manage long contexts efficiently
Streaming Generation
- Token Streaming: Stream generated tokens in real-time
- Incremental Generation: Generate text incrementally
- Interactive Generation: Support for interactive text generation
- Cancellation: Cancel generation requests gracefully
๐ Planned API Design
Basic Model Inference
use ;
use ;
// Load model
let model = from_file?;
// Create inference engine
let config = InferenceConfig ;
let engine = new?;
// Run inference
let input = from_slice?;
let output = engine.forward?;
println!;
Batch Processing
use ;
// Create batch processor
let batch_config = BatchConfig ;
let processor = new?;
// Process multiple requests
let requests = vec!;
let results = processor.process_batch.await?;
Streaming Inference
use ;
use StreamExt;
// Create streaming engine
let stream_config = StreamConfig ;
let streaming_engine = new?;
// Process streaming requests
let mut stream = streaming_engine.create_stream.await?;
while let Some = stream.next.await
Text Generation
use ;
// Create text generator
let generation_config = GenerationConfig ;
let generator = new?;
// Generate text
let prompt = "The future of AI is";
let generated = generator.generate.await?;
println!;
Advanced Features
use ;
// Optimize model for inference
let optimizer = new;
let optimized_model = optimizer
.fuse_operations
.optimize_memory_layout
.apply_quantization
.optimize?;
// Multi-device execution
let device_manager = new;
let devices = device_manager.available_devices;
let distributed_engine = distributed?;
// Performance monitoring
let monitor = new;
monitor.start_monitoring;
let output = engine.forward?;
let metrics = monitor.get_metrics;
println!;
println!;
๐๏ธ Planned Architecture
Core Components
bitnet-inference/src/
โโโ lib.rs # Main library interface
โโโ engine/ # Core inference engine
โ โโโ mod.rs # Engine interface
โ โโโ inference_engine.rs # Main inference engine
โ โโโ executor.rs # Operation executor
โ โโโ scheduler.rs # Operation scheduler
โ โโโ context.rs # Execution context
โโโ model/ # Model management
โ โโโ mod.rs # Model interface
โ โโโ loader.rs # Model loading and parsing
โ โโโ optimizer.rs # Model optimization
โ โโโ registry.rs # Model registry and caching
โ โโโ validation.rs # Model validation
โ โโโ formats/ # Support for different formats
โ โโโ safetensors.rs # SafeTensors format
โ โโโ onnx.rs # ONNX format support
โ โโโ custom.rs # Custom BitNet format
โโโ batch/ # Batch processing
โ โโโ mod.rs # Batch interface
โ โโโ processor.rs # Batch processor
โ โโโ scheduler.rs # Batch scheduler
โ โโโ dynamic.rs # Dynamic batching
โ โโโ memory.rs # Batch memory management
โโโ streaming/ # Streaming inference
โ โโโ mod.rs # Streaming interface
โ โโโ engine.rs # Streaming engine
โ โโโ pipeline.rs # Processing pipeline
โ โโโ buffer.rs # Stream buffering
โ โโโ async_runtime.rs # Async runtime support
โโโ generation/ # Text generation
โ โโโ mod.rs # Generation interface
โ โโโ generator.rs # Text generator
โ โโโ strategies.rs # Generation strategies
โ โโโ sampling.rs # Sampling methods
โ โโโ beam_search.rs # Beam search implementation
โ โโโ streaming_gen.rs # Streaming generation
โโโ optimization/ # Performance optimization
โ โโโ mod.rs # Optimization interface
โ โโโ graph.rs # Graph optimization
โ โโโ fusion.rs # Operation fusion
โ โโโ memory.rs # Memory optimization
โ โโโ quantization.rs # Runtime quantization
โ โโโ device.rs # Device-specific optimizations
โโโ device/ # Device management
โ โโโ mod.rs # Device interface
โ โโโ manager.rs # Device manager
โ โโโ scheduler.rs # Device scheduler
โ โโโ load_balancer.rs # Load balancing
โ โโโ migration.rs # Data migration
โโโ monitoring/ # Performance monitoring
โ โโโ mod.rs # Monitoring interface
โ โโโ profiler.rs # Performance profiler
โ โโโ metrics.rs # Metrics collection
โ โโโ telemetry.rs # Telemetry and logging
โ โโโ dashboard.rs # Performance dashboard
โโโ utils/ # Utilities and helpers
โโโ mod.rs # Utility interface
โโโ tokenizer.rs # Tokenization utilities
โโโ preprocessing.rs # Input preprocessing
โโโ postprocessing.rs # Output postprocessing
โโโ validation.rs # Input/output validation
Integration Architecture
// Integration with other BitNet crates
use HybridMemoryPool;
use BitNetQuantizer;
use MetalDevice;
// Unified inference pipeline
let pool = new?;
let quantizer = new?;
let metal_device = default?;
let engine = builder
.memory_pool
.quantizer
.device
.build?;
๐ Expected Performance Characteristics
Inference Performance (Projected)
Model Size | Batch Size | CPU Latency | GPU Latency | Throughput |
---|---|---|---|---|
7B params | 1 | 150ms | 45ms | 22 tok/s |
7B params | 8 | 800ms | 180ms | 178 tok/s |
7B params | 32 | 2.5s | 600ms | 533 tok/s |
13B params | 1 | 280ms | 85ms | 12 tok/s |
Memory Usage (Projected)
Model Size | FP32 Memory | BitNet Memory | Reduction |
---|---|---|---|
7B params | 28 GB | 2.6 GB | 10.8x |
13B params | 52 GB | 4.9 GB | 10.6x |
30B params | 120 GB | 11.3 GB | 10.6x |
70B params | 280 GB | 26.3 GB | 10.6x |
Throughput Scaling
Concurrent Streams | CPU Throughput | GPU Throughput | Memory Usage |
---|---|---|---|
1 | 22 tok/s | 67 tok/s | 2.6 GB |
4 | 65 tok/s | 220 tok/s | 4.2 GB |
8 | 95 tok/s | 380 tok/s | 6.8 GB |
16 | 120 tok/s | 520 tok/s | 12.1 GB |
๐งช Planned Testing Strategy
Unit Tests
# Test inference engine
# Test model loading
# Test batch processing
# Test text generation
Integration Tests
# Test end-to-end inference
# Test multi-device execution
# Test streaming inference
Performance Tests
# Benchmark inference performance
# Benchmark batch processing
# Memory usage benchmarks
Model Compatibility Tests
# Test with different model formats
# Test with various model sizes
# Accuracy validation tests
๐ง Configuration
Inference Configuration
use ;
let config = InferenceConfig ;
Advanced Configuration
use ;
let advanced_config = InferenceConfig ;
๐ Performance Optimization
Memory Optimization
- KV Cache: Efficient key-value cache for transformer models
- Memory Pooling: Reuse memory allocations across requests
- Memory Mapping: Use memory-mapped files for large models
- Garbage Collection: Intelligent cleanup of unused tensors
Compute Optimization
- Graph Fusion: Fuse compatible operations for better performance
- Kernel Optimization: Use optimized kernels for common operations
- Pipeline Parallelism: Pipeline different stages of inference
- Data Parallelism: Distribute computation across devices
I/O Optimization
- Model Caching: Cache frequently used models in memory
- Prefetching: Prefetch model weights and data
- Compression: Use compressed model formats
- Streaming: Stream large models from storage
๐ค Contributing
This crate needs complete implementation! Priority areas:
- Core Engine: Implement the basic inference engine
- Model Loading: Build model loading and management system
- Batch Processing: Implement efficient batch processing
- Text Generation: Add text generation capabilities
Getting Started
- Study transformer architecture and inference patterns
- Implement basic forward pass execution
- Add model loading from SafeTensors format
- Implement batch processing for efficiency
- Add comprehensive benchmarks and tests
Development Priorities
- Phase 1: Basic inference engine and model loading
- Phase 2: Batch processing and memory optimization
- Phase 3: Streaming inference and text generation
- Phase 4: Advanced optimizations and multi-device support
๐ References
- Transformer Architecture: Attention Is All You Need
- BitNet Paper: BitNet: Scaling 1-bit Transformers
- Inference Optimization: Efficient Transformers: A Survey
- SafeTensors Format: SafeTensors Documentation
๐ License
Licensed under the MIT License. See LICENSE for details.