bevy_cobweb::react

Struct ReactResMut

Source
pub struct ReactResMut<'w, R: ReactResource> { /* private fields */ }
Expand description

Mutable wrapper for reactive resources.

Implementations§

Source§

impl<'w, R: ReactResource> ReactResMut<'w, R>

Source

pub fn get_mut<'a>(&'a mut self, c: &mut Commands<'_, '_>) -> &'a mut R

Mutably access the resource and trigger reactions.

Source

pub fn get_noreact(&mut self) -> &mut R

Mutably access the resource without triggering reactions.

Source

pub fn set_if_neq(&mut self, c: &mut Commands<'_, '_>, new: R) -> Option<R>
where R: PartialEq,

Sets the resource value and triggers mutations only if the value will change.

Returns the previous value if it changed.

Trait Implementations§

Source§

impl<'w, R: ReactResource> Deref for ReactResMut<'w, R>

Source§

type Target = R

The resulting type after dereferencing.
Source§

fn deref(&self) -> &R

Dereferences the value.
Source§

impl<'w, R: ReactResource> DetectChanges for ReactResMut<'w, R>

Source§

fn is_added(&self) -> bool

Returns true if this value was added after the system last ran.
Source§

fn is_changed(&self) -> bool

Returns true if this value was added or mutably dereferenced either since the last time the system ran or, if the system never ran, since the beginning of the program. Read more
Source§

fn last_changed(&self) -> Tick

Returns the change tick recording the time this data was most recently changed. Read more
Source§

impl<R: ReactResource> SystemParam for ReactResMut<'_, R>

Source§

type State = FetchState<R>

Used to store data which persists across invocations of a system.
Source§

type Item<'w, 's> = ReactResMut<'w, R>

The item type returned when constructing this system param. The value of this associated type should be Self, instantiated with new lifetimes. Read more
Source§

fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State

Registers any World access used by this SystemParam and creates a new instance of this param’s State.
Source§

unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta, )

For the specified Archetype, registers the components accessed by this SystemParam (if applicable).a Read more
Source§

fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)

Applies any deferred mutations stored in this SystemParam’s state. This is used to apply Commands during apply_deferred.
Source§

fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )

Queues any deferred mutations to be applied at the next apply_deferred.
Source§

unsafe fn validate_param<'w, 's>( state: &'s Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, ) -> bool

Validates that the param can be acquired by the get_param. Built-in executors use this to prevent systems with invalid params from running. For nested SystemParams validation will fail if any delegated validation fails. Read more
Source§

unsafe fn get_param<'w, 's>( state: &'s mut Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, change_tick: Tick, ) -> Self::Item<'w, 's>

Creates a parameter to be passed into a SystemParamFunction. Read more
Source§

impl<'w, 's, R: ReactResource> ReadOnlySystemParam for ReactResMut<'w, R>
where ResMut<'w, ReactResInner<R>>: ReadOnlySystemParam,

Auto Trait Implementations§

§

impl<'w, R> Freeze for ReactResMut<'w, R>

§

impl<'w, R> RefUnwindSafe for ReactResMut<'w, R>
where R: RefUnwindSafe,

§

impl<'w, R> Send for ReactResMut<'w, R>

§

impl<'w, R> Sync for ReactResMut<'w, R>

§

impl<'w, R> Unpin for ReactResMut<'w, R>

§

impl<'w, R> !UnwindSafe for ReactResMut<'w, R>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T, C, D> Curve<T> for D
where C: Curve<T> + ?Sized, D: Deref<Target = C>,

Source§

fn domain(&self) -> Interval

The interval over which this curve is parametrized. Read more
Source§

fn sample_unchecked(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, extracting the associated value. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample(&self, t: f32) -> Option<T>

Sample a point on this curve at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

fn sample_clamped(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

fn sample_iter( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = Option<T>>
where Self: Sized,

Sample a collection of n >= 0 points on this curve at the parameter values t_n, returning None if the point is outside of the curve’s domain. Read more
Source§

fn sample_iter_unchecked( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
where Self: Sized,

Sample a collection of n >= 0 points on this curve at the parameter values t_n, extracting the associated values. This is the unchecked version of sampling, which should only be used if the sample times t_n are already known to lie within the curve’s domain. Read more
Source§

fn sample_iter_clamped( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>
where Self: Sized,

Sample a collection of n >= 0 points on this curve at the parameter values t_n, clamping t_n to lie inside the domain of the curve. Read more
Source§

fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
where Self: Sized, F: Fn(T) -> S,

Create a new curve by mapping the values of this curve via a function f; i.e., if the sample at time t for this curve is x, the value at time t on the new curve will be f(x).
Source§

fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
where Self: Sized, F: Fn(f32) -> f32,

Create a new Curve whose parameter space is related to the parameter space of this curve by f. For each time t, the sample from the new curve at time t is the sample from this curve at time f(t). The given domain will be the domain of the new curve. The function f is expected to take domain into self.domain(). Read more
Source§

fn reparametrize_linear( self, domain: Interval, ) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
where Self: Sized,

Linearly reparametrize this Curve, producing a new curve whose domain is the given domain instead of the current one. This operation is only valid for curves with bounded domains; if either this curve’s domain or the given domain is unbounded, an error is returned.
Source§

fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
where Self: Sized, C: Curve<f32>,

Reparametrize this Curve by sampling from another curve. Read more
Source§

fn graph(self) -> GraphCurve<T, Self>
where Self: Sized,

Create a new Curve which is the graph of this one; that is, its output echoes the sample time as part of a tuple. Read more
Source§

fn zip<S, C>( self, other: C, ) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>
where Self: Sized, C: Curve<S>,

Create a new Curve by zipping this curve together with another. Read more
Source§

fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
where Self: Sized, C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>
where Self: Sized,

Create a new Curve inverting this curve on the x-axis, producing another curve with outputs of the same type, effectively playing backwards starting at self.domain().end() and transitioning over to self.domain().start(). The domain of the new curve is still the same. Read more
Source§

fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>
where Self: Sized,

Create a new Curve repeating this curve N times, producing another curve with outputs of the same type. The domain of the new curve will be bigger by a factor of n + 1. Read more
Source§

fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>
where Self: Sized,

Create a new Curve repeating this curve forever, producing another curve with outputs of the same type. The domain of the new curve will be unbounded. Read more
Source§

fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>
where Self: Sized,

Create a new Curve chaining the original curve with its inverse, producing another curve with outputs of the same type. The domain of the new curve will be twice as long. The transition point is guaranteed to not make any jumps. Read more
Source§

fn chain_continue<C>( self, other: C, ) -> Result<ContinuationCurve<T, Self, C>, ChainError>
where Self: Sized, T: VectorSpace, C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
where Self: Sized, I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using the provided interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. If segments is zero, or if this curve has an unbounded domain, then a ResamplingError is returned. Read more
Source§

fn resample_auto( &self, segments: usize, ) -> Result<SampleAutoCurve<T>, ResamplingError>
where Self: Sized, T: StableInterpolate,

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using automatic interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. If segments is zero, or if this curve has an unbounded domain, then a ResamplingError is returned.
Source§

fn samples( &self, samples: usize, ) -> Result<impl Iterator<Item = T>, ResamplingError>
where Self: Sized,

Extract an iterator over evenly-spaced samples from this curve. If samples is less than 2 or if this curve has unbounded domain, then an error is returned instead.
Source§

fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
where Self: Sized, I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over samples taken at a given set of times. The given interpolation is used to interpolate adjacent samples, and the sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

fn resample_uneven_auto( &self, sample_times: impl IntoIterator<Item = f32>, ) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>
where Self: Sized, T: StableInterpolate,

Resample this Curve to produce a new one that is defined by automatic interpolation over samples taken at the given set of times. The given sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

fn by_ref(&self) -> &Self
where Self: Sized,

Borrow this curve rather than taking ownership of it. This is essentially an alias for a prefix &; the point is that intermediate operations can be performed while retaining access to the original curve. Read more
Source§

fn flip<U, V>(self) -> impl Curve<(V, U)>
where Self: Sized + Curve<(U, V)>,

Flip this curve so that its tuple output is arranged the other way.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize = _

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,