function_reflection/function_reflection.rs
1//! This example demonstrates how functions can be called dynamically using reflection.
2//!
3//! Function reflection is useful for calling regular Rust functions in a dynamic context,
4//! where the types of arguments, return values, and even the function itself aren't known at compile time.
5//!
6//! This can be used for things like adding scripting support to your application,
7//! processing deserialized reflection data, or even just storing type-erased versions of your functions.
8
9use bevy::reflect::{
10 func::{
11 ArgList, DynamicFunction, DynamicFunctionMut, FunctionResult, IntoFunction,
12 IntoFunctionMut, Return, SignatureInfo,
13 },
14 PartialReflect, Reflect,
15};
16
17// Note that the `dbg!` invocations are used purely for demonstration purposes
18// and are not strictly necessary for the example to work.
19fn main() {
20 // There are times when it may be helpful to store a function away for later.
21 // In Rust, we can do this by storing either a function pointer or a function trait object.
22 // For example, say we wanted to store the following function:
23 fn add(left: i32, right: i32) -> i32 {
24 left + right
25 }
26
27 // We could store it as either of the following:
28 let fn_pointer: fn(i32, i32) -> i32 = add;
29 let fn_trait_object: Box<dyn Fn(i32, i32) -> i32> = Box::new(add);
30
31 // And we can call them like so:
32 let result = fn_pointer(2, 2);
33 assert_eq!(result, 4);
34 let result = fn_trait_object(2, 2);
35 assert_eq!(result, 4);
36
37 // However, you'll notice that we have to know the types of the arguments and return value at compile time.
38 // This means there's not really a way to store or call these functions dynamically at runtime.
39 // Luckily, Bevy's reflection crate comes with a set of tools for doing just that!
40 // We do this by first converting our function into the reflection-based `DynamicFunction` type
41 // using the `IntoFunction` trait.
42 let function: DynamicFunction<'static> = dbg!(add.into_function());
43
44 // This time, you'll notice that `DynamicFunction` doesn't take any information about the function's arguments or return value.
45 // This is because `DynamicFunction` checks the types of the arguments and return value at runtime.
46 // Now we can generate a list of arguments:
47 let args: ArgList = dbg!(ArgList::new().with_owned(2_i32).with_owned(2_i32));
48
49 // And finally, we can call the function.
50 // This returns a `Result` indicating whether the function was called successfully.
51 // For now, we'll just unwrap it to get our `Return` value,
52 // which is an enum containing the function's return value.
53 let return_value: Return = dbg!(function.call(args).unwrap());
54
55 // The `Return` value can be pattern matched or unwrapped to get the underlying reflection data.
56 // For the sake of brevity, we'll just unwrap it here and downcast it to the expected type of `i32`.
57 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
58 assert_eq!(value.try_take::<i32>().unwrap(), 4);
59
60 // The same can also be done for closures that capture references to their environment.
61 // Closures that capture their environment immutably can be converted into a `DynamicFunction`
62 // using the `IntoFunction` trait.
63 let minimum = 5;
64 let clamp = |value: i32| value.max(minimum);
65
66 let function: DynamicFunction = dbg!(clamp.into_function());
67 let args = dbg!(ArgList::new().with_owned(2_i32));
68 let return_value = dbg!(function.call(args).unwrap());
69 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
70 assert_eq!(value.try_take::<i32>().unwrap(), 5);
71
72 // We can also handle closures that capture their environment mutably
73 // using the `IntoFunctionMut` trait.
74 let mut count = 0;
75 let increment = |amount: i32| count += amount;
76
77 let closure: DynamicFunctionMut = dbg!(increment.into_function_mut());
78 let args = dbg!(ArgList::new().with_owned(5_i32));
79
80 // Because `DynamicFunctionMut` mutably borrows `total`,
81 // it will need to be dropped before `total` can be accessed again.
82 // This can be done manually with `drop(closure)` or by using the `DynamicFunctionMut::call_once` method.
83 dbg!(closure.call_once(args).unwrap());
84 assert_eq!(count, 5);
85
86 // Generic functions can also be converted into a `DynamicFunction`,
87 // however, they will need to be manually monomorphized first.
88 fn stringify<T: ToString>(value: T) -> String {
89 value.to_string()
90 }
91
92 // We have to manually specify the concrete generic type we want to use.
93 let function = stringify::<i32>.into_function();
94
95 let args = ArgList::new().with_owned(123_i32);
96 let return_value = function.call(args).unwrap();
97 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
98 assert_eq!(value.try_take::<String>().unwrap(), "123");
99
100 // To make things a little easier, we can also "overload" functions.
101 // This makes it so that a single `DynamicFunction` can represent multiple functions,
102 // and the correct one is chosen based on the types of the arguments.
103 // Each function overload must have a unique argument signature.
104 let function = stringify::<i32>
105 .into_function()
106 .with_overload(stringify::<f32>);
107
108 // Now our `function` accepts both `i32` and `f32` arguments.
109 let args = ArgList::new().with_owned(1.23_f32);
110 let return_value = function.call(args).unwrap();
111 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
112 assert_eq!(value.try_take::<String>().unwrap(), "1.23");
113
114 // Function overloading even allows us to have a variable number of arguments.
115 let function = (|| 0)
116 .into_function()
117 .with_overload(|a: i32| a)
118 .with_overload(|a: i32, b: i32| a + b)
119 .with_overload(|a: i32, b: i32, c: i32| a + b + c);
120
121 let args = ArgList::new()
122 .with_owned(1_i32)
123 .with_owned(2_i32)
124 .with_owned(3_i32);
125 let return_value = function.call(args).unwrap();
126 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
127 assert_eq!(value.try_take::<i32>().unwrap(), 6);
128
129 // As stated earlier, `IntoFunction` works for many kinds of simple functions.
130 // Functions with non-reflectable arguments or return values may not be able to be converted.
131 // Generic functions are also not supported (unless manually monomorphized like `foo::<i32>.into_function()`).
132 // Additionally, the lifetime of the return value is tied to the lifetime of the first argument.
133 // However, this means that many methods (i.e. functions with a `self` parameter) are also supported:
134 #[derive(Reflect, Default)]
135 struct Data {
136 value: String,
137 }
138
139 impl Data {
140 fn set_value(&mut self, value: String) {
141 self.value = value;
142 }
143
144 // Note that only `&'static str` implements `Reflect`.
145 // To get around this limitation we can use `&String` instead.
146 fn get_value(&self) -> &String {
147 &self.value
148 }
149 }
150
151 let mut data = Data::default();
152
153 let set_value = dbg!(Data::set_value.into_function());
154 let args = dbg!(ArgList::new().with_mut(&mut data)).with_owned(String::from("Hello, world!"));
155 dbg!(set_value.call(args).unwrap());
156 assert_eq!(data.value, "Hello, world!");
157
158 let get_value = dbg!(Data::get_value.into_function());
159 let args = dbg!(ArgList::new().with_ref(&data));
160 let return_value = dbg!(get_value.call(args).unwrap());
161 let value: &dyn PartialReflect = return_value.unwrap_ref();
162 assert_eq!(value.try_downcast_ref::<String>().unwrap(), "Hello, world!");
163
164 // For more complex use cases, you can always create a custom `DynamicFunction` manually.
165 // This is useful for functions that can't be converted via the `IntoFunction` trait.
166 // For example, this function doesn't implement `IntoFunction` due to the fact that
167 // the lifetime of the return value is not tied to the lifetime of the first argument.
168 fn get_or_insert(value: i32, container: &mut Option<i32>) -> &i32 {
169 if container.is_none() {
170 *container = Some(value);
171 }
172
173 container.as_ref().unwrap()
174 }
175
176 let get_or_insert_function = dbg!(DynamicFunction::new(
177 |mut args: ArgList| -> FunctionResult {
178 // The `ArgList` contains the arguments in the order they were pushed.
179 // The `DynamicFunction` will validate that the list contains
180 // exactly the number of arguments we expect.
181 // We can retrieve them out in order (note that this modifies the `ArgList`):
182 let value = args.take::<i32>()?;
183 let container = args.take::<&mut Option<i32>>()?;
184
185 // We could have also done the following to make use of type inference:
186 // let value = args.take_owned()?;
187 // let container = args.take_mut()?;
188
189 Ok(Return::Ref(get_or_insert(value, container)))
190 },
191 // Functions can be either anonymous or named.
192 // It's good practice, though, to try and name your functions whenever possible.
193 // This makes it easier to debug and is also required for function registration.
194 // We can either give it a custom name or use the function's type name as
195 // derived from `std::any::type_name_of_val`.
196 SignatureInfo::named(std::any::type_name_of_val(&get_or_insert))
197 // We can always change the name if needed.
198 // It's a good idea to also ensure that the name is unique,
199 // such as by using its type name or by prefixing it with your crate name.
200 .with_name("my_crate::get_or_insert")
201 // Since our function takes arguments, we should provide that argument information.
202 // This is used to validate arguments when calling the function.
203 // And it aids consumers of the function with their own validation and debugging.
204 // Arguments should be provided in the order they are defined in the function.
205 .with_arg::<i32>("value")
206 .with_arg::<&mut Option<i32>>("container")
207 // We can provide return information as well.
208 .with_return::<&i32>(),
209 ));
210
211 let mut container: Option<i32> = None;
212
213 let args = dbg!(ArgList::new().with_owned(5_i32).with_mut(&mut container));
214 let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
215 assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
216
217 let args = dbg!(ArgList::new().with_owned(500_i32).with_mut(&mut container));
218 let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
219 assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
220}