Quat

Struct Quat 

Source
pub struct Quat(/* private fields */);
Expand description

A quaternion representing an orientation.

This quaternion is intended to be of unit length but may denormalize due to floating point “error creep” which can occur when successive quaternion operations are applied.

SIMD vector types are used for storage on supported platforms.

This type is 16 byte aligned.

Implementations§

Source§

impl Quat

Source

pub const IDENTITY: Quat

The identity quaternion. Corresponds to no rotation.

Source

pub const NAN: Quat

All NANs.

Source

pub const fn from_xyzw(x: f32, y: f32, z: f32, w: f32) -> Quat

Creates a new rotation quaternion.

This should generally not be called manually unless you know what you are doing. Use one of the other constructors instead such as identity or from_axis_angle.

from_xyzw is mostly used by unit tests and serde deserialization.

§Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

Examples found in repository?
examples/math/custom_primitives.rs (line 53)
50const TRANSFORM_3D: Transform = Transform {
51    translation: Vec3::ZERO,
52    // The camera is pointing at the 3D shape
53    rotation: Quat::from_xyzw(-0.14521316, -0.0, -0.0, 0.98940045),
54    scale: Vec3::ONE,
55};
More examples
Hide additional examples
examples/3d/parallax_mapping.rs (line 167)
164const CAMERA_POSITIONS: &[Transform] = &[
165    Transform {
166        translation: Vec3::new(1.5, 1.5, 1.5),
167        rotation: Quat::from_xyzw(-0.279, 0.364, 0.115, 0.880),
168        scale: Vec3::ONE,
169    },
170    Transform {
171        translation: Vec3::new(2.4, 0.0, 0.2),
172        rotation: Quat::from_xyzw(0.094, 0.676, 0.116, 0.721),
173        scale: Vec3::ONE,
174    },
175    Transform {
176        translation: Vec3::new(2.4, 2.6, -4.3),
177        rotation: Quat::from_xyzw(0.170, 0.908, 0.308, 0.225),
178        scale: Vec3::ONE,
179    },
180    Transform {
181        translation: Vec3::new(-1.0, 0.8, -1.2),
182        rotation: Quat::from_xyzw(-0.004, 0.909, 0.247, -0.335),
183        scale: Vec3::ONE,
184    },
185];
examples/3d/solari.rs (lines 107-112)
58fn setup(
59    mut commands: Commands,
60    asset_server: Res<AssetServer>,
61    args: Res<Args>,
62    #[cfg(all(feature = "dlss", not(feature = "force_disable_dlss")))] dlss_rr_supported: Option<
63        Res<DlssRayReconstructionSupported>,
64    >,
65) {
66    commands
67        .spawn((
68            SceneRoot(
69                asset_server.load(
70                    GltfAssetLabel::Scene(0)
71                        .from_asset("https://github.com/bevyengine/bevy_asset_files/raw/2a5950295a8b6d9d051d59c0df69e87abcda58c3/pica_pica/mini_diorama_01.glb")
72                ),
73            ),
74            Transform::from_scale(Vec3::splat(10.0)),
75        ))
76        .observe(add_raytracing_meshes_on_scene_load);
77
78    commands
79        .spawn((
80            SceneRoot(asset_server.load(
81                GltfAssetLabel::Scene(0).from_asset("https://github.com/bevyengine/bevy_asset_files/raw/2a5950295a8b6d9d051d59c0df69e87abcda58c3/pica_pica/robot_01.glb")
82            )),
83            Transform::from_scale(Vec3::splat(2.0))
84                .with_translation(Vec3::new(-2.0, 0.05, -2.1))
85                .with_rotation(Quat::from_rotation_y(PI / 2.0)),
86            PatrolPath {
87                path: vec![
88                    (Vec3::new(-2.0, 0.05, -2.1), Quat::from_rotation_y(PI / 2.0)),
89                    (Vec3::new(2.2, 0.05, -2.1), Quat::from_rotation_y(0.0)),
90                    (
91                        Vec3::new(2.2, 0.05, 2.1),
92                        Quat::from_rotation_y(3.0 * PI / 2.0),
93                    ),
94                    (Vec3::new(-2.0, 0.05, 2.1), Quat::from_rotation_y(PI)),
95                ],
96                i: 0,
97            },
98        ))
99        .observe(add_raytracing_meshes_on_scene_load);
100
101    commands.spawn((
102        DirectionalLight {
103            illuminance: light_consts::lux::FULL_DAYLIGHT,
104            shadows_enabled: false, // Solari replaces shadow mapping
105            ..default()
106        },
107        Transform::from_rotation(Quat::from_xyzw(
108            -0.13334629,
109            -0.86597735,
110            -0.3586996,
111            0.3219264,
112        )),
113    ));
114
115    let mut camera = commands.spawn((
116        Camera3d::default(),
117        Camera {
118            clear_color: ClearColorConfig::Custom(Color::BLACK),
119            ..default()
120        },
121        CameraController {
122            walk_speed: 3.0,
123            run_speed: 10.0,
124            ..Default::default()
125        },
126        Transform::from_translation(Vec3::new(0.219417, 2.5764852, 6.9718704)).with_rotation(
127            Quat::from_xyzw(-0.1466768, 0.013738206, 0.002037309, 0.989087),
128        ),
129        // Msaa::Off and CameraMainTextureUsages with STORAGE_BINDING are required for Solari
130        CameraMainTextureUsages::default().with(TextureUsages::STORAGE_BINDING),
131        Msaa::Off,
132    ));
133
134    if args.pathtracer == Some(true) {
135        camera.insert(Pathtracer::default());
136    } else {
137        camera.insert(SolariLighting::default());
138    }
139
140    // Using DLSS Ray Reconstruction for denoising (and cheaper rendering via upscaling) is _highly_ recommended when using Solari
141    #[cfg(all(feature = "dlss", not(feature = "force_disable_dlss")))]
142    if dlss_rr_supported.is_some() {
143        camera.insert(Dlss::<DlssRayReconstructionFeature> {
144            perf_quality_mode: Default::default(),
145            reset: Default::default(),
146            _phantom_data: Default::default(),
147        });
148    }
149
150    commands.spawn((
151        Text::default(),
152        Node {
153            position_type: PositionType::Absolute,
154            bottom: Val::Px(12.0),
155            left: Val::Px(12.0),
156            ..default()
157        },
158    ));
159}
160
161fn add_raytracing_meshes_on_scene_load(
162    scene_ready: On<SceneInstanceReady>,
163    children: Query<&Children>,
164    mesh_query: Query<(
165        &Mesh3d,
166        &MeshMaterial3d<StandardMaterial>,
167        Option<&GltfMaterialName>,
168    )>,
169    mut meshes: ResMut<Assets<Mesh>>,
170    mut materials: ResMut<Assets<StandardMaterial>>,
171    mut commands: Commands,
172    args: Res<Args>,
173) {
174    for descendant in children.iter_descendants(scene_ready.entity) {
175        if let Ok((Mesh3d(mesh_handle), MeshMaterial3d(material_handle), material_name)) =
176            mesh_query.get(descendant)
177        {
178            // Add raytracing mesh component
179            commands
180                .entity(descendant)
181                .insert(RaytracingMesh3d(mesh_handle.clone()));
182
183            // Ensure meshes are Solari compatible
184            let mesh = meshes.get_mut(mesh_handle).unwrap();
185            if !mesh.contains_attribute(Mesh::ATTRIBUTE_UV_0) {
186                let vertex_count = mesh.count_vertices();
187                mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, vec![[0.0, 0.0]; vertex_count]);
188                mesh.insert_attribute(
189                    Mesh::ATTRIBUTE_TANGENT,
190                    vec![[0.0, 0.0, 0.0, 0.0]; vertex_count],
191                );
192            }
193            if !mesh.contains_attribute(Mesh::ATTRIBUTE_TANGENT) {
194                mesh.generate_tangents().unwrap();
195            }
196            if mesh.contains_attribute(Mesh::ATTRIBUTE_UV_1) {
197                mesh.remove_attribute(Mesh::ATTRIBUTE_UV_1);
198            }
199
200            // Prevent rasterization if using pathtracer
201            if args.pathtracer == Some(true) {
202                commands.entity(descendant).remove::<Mesh3d>();
203            }
204
205            // Adjust scene materials to better demo Solari features
206            if material_name.map(|s| s.0.as_str()) == Some("material") {
207                let material = materials.get_mut(material_handle).unwrap();
208                material.emissive = LinearRgba::BLACK;
209            }
210            if material_name.map(|s| s.0.as_str()) == Some("Lights") {
211                let material = materials.get_mut(material_handle).unwrap();
212                material.emissive =
213                    LinearRgba::from(Color::srgb(0.941, 0.714, 0.043)) * 1_000_000.0;
214                material.alpha_mode = AlphaMode::Opaque;
215                material.specular_transmission = 0.0;
216
217                commands.insert_resource(RobotLightMaterial(material_handle.clone()));
218            }
219            if material_name.map(|s| s.0.as_str()) == Some("Glass_Dark_01") {
220                let material = materials.get_mut(material_handle).unwrap();
221                material.alpha_mode = AlphaMode::Opaque;
222                material.specular_transmission = 0.0;
223            }
224        }
225    }
226}
227
228fn pause_scene(mut time: ResMut<Time<Virtual>>, key_input: Res<ButtonInput<KeyCode>>) {
229    if key_input.just_pressed(KeyCode::Space) {
230        if time.is_paused() {
231            time.unpause();
232        } else {
233            time.pause();
234        }
235    }
236}
237
238#[derive(Resource)]
239struct RobotLightMaterial(Handle<StandardMaterial>);
240
241fn toggle_lights(
242    key_input: Res<ButtonInput<KeyCode>>,
243    robot_light_material: Option<Res<RobotLightMaterial>>,
244    mut materials: ResMut<Assets<StandardMaterial>>,
245    directional_light: Query<Entity, With<DirectionalLight>>,
246    mut commands: Commands,
247) {
248    if key_input.just_pressed(KeyCode::Digit1) {
249        if let Ok(directional_light) = directional_light.single() {
250            commands.entity(directional_light).despawn();
251        } else {
252            commands.spawn((
253                DirectionalLight {
254                    illuminance: light_consts::lux::FULL_DAYLIGHT,
255                    shadows_enabled: false, // Solari replaces shadow mapping
256                    ..default()
257                },
258                Transform::from_rotation(Quat::from_xyzw(
259                    -0.13334629,
260                    -0.86597735,
261                    -0.3586996,
262                    0.3219264,
263                )),
264            ));
265        }
266    }
267
268    if key_input.just_pressed(KeyCode::Digit2)
269        && let Some(robot_light_material) = robot_light_material
270    {
271        let material = materials.get_mut(&robot_light_material.0).unwrap();
272        if material.emissive == LinearRgba::BLACK {
273            material.emissive = LinearRgba::from(Color::srgb(0.941, 0.714, 0.043)) * 1_000_000.0;
274        } else {
275            material.emissive = LinearRgba::BLACK;
276        }
277    }
278}
Source

pub const fn from_array(a: [f32; 4]) -> Quat

Creates a rotation quaternion from an array.

§Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

Examples found in repository?
examples/3d/pcss.rs (lines 186-191)
179fn spawn_light(commands: &mut Commands, app_status: &AppStatus) {
180    // Because this light can become a directional light, point light, or spot
181    // light depending on the settings, we add the union of the components
182    // necessary for this light to behave as all three of those.
183    commands
184        .spawn((
185            create_directional_light(app_status),
186            Transform::from_rotation(Quat::from_array([
187                0.6539259,
188                -0.34646285,
189                0.36505926,
190                -0.5648683,
191            ]))
192            .with_translation(vec3(57.693, 34.334, -6.422)),
193        ))
194        // These two are needed for point lights.
195        .insert(CubemapVisibleEntities::default())
196        .insert(CubemapFrusta::default())
197        // These two are needed for spot lights.
198        .insert(VisibleMeshEntities::default())
199        .insert(Frustum::default());
200}
Source

pub const fn from_vec4(v: Vec4) -> Quat

Creates a new rotation quaternion from a 4D vector.

§Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

Source

pub fn from_slice(slice: &[f32]) -> Quat

Creates a rotation quaternion from a slice.

§Preconditions

This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.

§Panics

Panics if slice length is less than 4.

Source

pub fn write_to_slice(self, slice: &mut [f32])

Writes the quaternion to an unaligned slice.

§Panics

Panics if slice length is less than 4.

Source

pub fn from_axis_angle(axis: Vec3, angle: f32) -> Quat

Create a quaternion for a normalized rotation axis and angle (in radians).

The axis must be a unit vector.

§Panics

Will panic if axis is not normalized when glam_assert is enabled.

Examples found in repository?
examples/gizmos/axes.rs (line 191)
187fn random_rotation(rng: &mut impl Rng) -> Quat {
188    let dir = random_direction(rng);
189    let angle = rng.random::<f32>() * 2. * PI;
190
191    Quat::from_axis_angle(dir, angle)
192}
More examples
Hide additional examples
examples/shader/shader_material_screenspace_texture.rs (line 55)
52fn rotate_camera(mut cam_transform: Single<&mut Transform, With<MainCamera>>, time: Res<Time>) {
53    cam_transform.rotate_around(
54        Vec3::ZERO,
55        Quat::from_axis_angle(Vec3::Y, 45f32.to_radians() * time.delta_secs()),
56    );
57    cam_transform.look_at(Vec3::ZERO, Vec3::Y);
58}
examples/3d/split_screen.rs (line 200)
181fn button_system(
182    interaction_query: Query<
183        (&Interaction, &ComputedUiTargetCamera, &RotateCamera),
184        (Changed<Interaction>, With<Button>),
185    >,
186    mut camera_query: Query<&mut Transform, With<Camera>>,
187) {
188    for (interaction, computed_target, RotateCamera(direction)) in &interaction_query {
189        if let Interaction::Pressed = *interaction {
190            // Since TargetCamera propagates to the children, we can use it to find
191            // which side of the screen the button is on.
192            if let Some(mut camera_transform) = computed_target
193                .get()
194                .and_then(|camera| camera_query.get_mut(camera).ok())
195            {
196                let angle = match direction {
197                    Direction::Left => -0.1,
198                    Direction::Right => 0.1,
199                };
200                camera_transform.rotate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, angle));
201            }
202        }
203    }
204}
examples/3d/ssr.rs (line 336)
300fn move_camera(
301    keyboard_input: Res<ButtonInput<KeyCode>>,
302    mut mouse_wheel_reader: MessageReader<MouseWheel>,
303    mut cameras: Query<&mut Transform, With<Camera>>,
304) {
305    let (mut distance_delta, mut theta_delta) = (0.0, 0.0);
306
307    // Handle keyboard events.
308    if keyboard_input.pressed(KeyCode::KeyW) {
309        distance_delta -= CAMERA_KEYBOARD_ZOOM_SPEED;
310    }
311    if keyboard_input.pressed(KeyCode::KeyS) {
312        distance_delta += CAMERA_KEYBOARD_ZOOM_SPEED;
313    }
314    if keyboard_input.pressed(KeyCode::KeyA) {
315        theta_delta += CAMERA_KEYBOARD_ORBIT_SPEED;
316    }
317    if keyboard_input.pressed(KeyCode::KeyD) {
318        theta_delta -= CAMERA_KEYBOARD_ORBIT_SPEED;
319    }
320
321    // Handle mouse events.
322    for mouse_wheel in mouse_wheel_reader.read() {
323        distance_delta -= mouse_wheel.y * CAMERA_MOUSE_WHEEL_ZOOM_SPEED;
324    }
325
326    // Update transforms.
327    for mut camera_transform in cameras.iter_mut() {
328        let local_z = camera_transform.local_z().as_vec3().normalize_or_zero();
329        if distance_delta != 0.0 {
330            camera_transform.translation = (camera_transform.translation.length() + distance_delta)
331                .clamp(CAMERA_ZOOM_RANGE.start, CAMERA_ZOOM_RANGE.end)
332                * local_z;
333        }
334        if theta_delta != 0.0 {
335            camera_transform
336                .translate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, theta_delta));
337            camera_transform.look_at(Vec3::ZERO, Vec3::Y);
338        }
339    }
340}
examples/3d/decal.rs (lines 82-85)
24fn setup(
25    mut commands: Commands,
26    mut meshes: ResMut<Assets<Mesh>>,
27    mut standard_materials: ResMut<Assets<StandardMaterial>>,
28    mut decal_standard_materials: ResMut<Assets<ForwardDecalMaterial<StandardMaterial>>>,
29    asset_server: Res<AssetServer>,
30) {
31    // Spawn the forward decal
32    commands.spawn((
33        Name::new("Decal"),
34        ForwardDecal,
35        MeshMaterial3d(decal_standard_materials.add(ForwardDecalMaterial {
36            base: StandardMaterial {
37                base_color_texture: Some(asset_server.load("textures/uv_checker_bw.png")),
38                ..default()
39            },
40            extension: ForwardDecalMaterialExt {
41                depth_fade_factor: 1.0,
42            },
43        })),
44        Transform::from_scale(Vec3::splat(4.0)),
45    ));
46
47    commands.spawn((
48        Name::new("Camera"),
49        Camera3d::default(),
50        CameraController::default(),
51        // Must enable the depth prepass to render forward decals
52        DepthPrepass,
53        // Must disable MSAA to use decals on WebGPU
54        Msaa::Off,
55        // FXAA is a fine alternative to MSAA for anti-aliasing
56        Fxaa::default(),
57        Transform::from_xyz(2.0, 9.5, 2.5).looking_at(Vec3::ZERO, Vec3::Y),
58    ));
59
60    let white_material = standard_materials.add(Color::WHITE);
61
62    commands.spawn((
63        Name::new("Floor"),
64        Mesh3d(meshes.add(Rectangle::from_length(10.0))),
65        MeshMaterial3d(white_material.clone()),
66        Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
67    ));
68
69    // Spawn a few cube with random rotations to showcase how the decals behave with non-flat geometry
70    let num_obs = 10;
71    let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
72    for i in 0..num_obs {
73        for j in 0..num_obs {
74            let rotation_axis: [f32; 3] = rng.random();
75            let rotation_vec: Vec3 = rotation_axis.into();
76            let rotation: u32 = rng.random_range(0..360);
77            let transform = Transform::from_xyz(
78                (-num_obs + 1) as f32 / 2.0 + i as f32,
79                -0.2,
80                (-num_obs + 1) as f32 / 2.0 + j as f32,
81            )
82            .with_rotation(Quat::from_axis_angle(
83                rotation_vec.normalize_or_zero(),
84                (rotation as f32).to_radians(),
85            ));
86
87            commands.spawn((
88                Mesh3d(meshes.add(Cuboid::from_length(0.6))),
89                MeshMaterial3d(white_material.clone()),
90                transform,
91            ));
92        }
93    }
94
95    commands.spawn((
96        Name::new("Light"),
97        PointLight {
98            shadows_enabled: true,
99            ..default()
100        },
101        Transform::from_xyz(4.0, 8.0, 4.0),
102    ));
103}
examples/animation/animated_transform.rs (line 81)
22fn setup(
23    mut commands: Commands,
24    mut meshes: ResMut<Assets<Mesh>>,
25    mut materials: ResMut<Assets<StandardMaterial>>,
26    mut animations: ResMut<Assets<AnimationClip>>,
27    mut graphs: ResMut<Assets<AnimationGraph>>,
28) {
29    // Camera
30    commands.spawn((
31        Camera3d::default(),
32        Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
33    ));
34
35    // Light
36    commands.spawn((
37        PointLight {
38            intensity: 500_000.0,
39            ..default()
40        },
41        Transform::from_xyz(0.0, 2.5, 0.0),
42    ));
43
44    // Let's use the `Name` component to target entities. We can use anything we
45    // like, but names are convenient.
46    let planet = Name::new("planet");
47    let orbit_controller = Name::new("orbit_controller");
48    let satellite = Name::new("satellite");
49
50    // Creating the animation
51    let mut animation = AnimationClip::default();
52    // A curve can modify a single part of a transform: here, the translation.
53    let planet_animation_target_id = AnimationTargetId::from_name(&planet);
54    animation.add_curve_to_target(
55        planet_animation_target_id,
56        AnimatableCurve::new(
57            animated_field!(Transform::translation),
58            UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
59                Vec3::new(1.0, 0.0, 1.0),
60                Vec3::new(-1.0, 0.0, 1.0),
61                Vec3::new(-1.0, 0.0, -1.0),
62                Vec3::new(1.0, 0.0, -1.0),
63                // in case seamless looping is wanted, the last keyframe should
64                // be the same as the first one
65                Vec3::new(1.0, 0.0, 1.0),
66            ]))
67            .expect("should be able to build translation curve because we pass in valid samples"),
68        ),
69    );
70    // Or it can modify the rotation of the transform.
71    // To find the entity to modify, the hierarchy will be traversed looking for
72    // an entity with the right name at each level.
73    let orbit_controller_animation_target_id =
74        AnimationTargetId::from_names([planet.clone(), orbit_controller.clone()].iter());
75    animation.add_curve_to_target(
76        orbit_controller_animation_target_id,
77        AnimatableCurve::new(
78            animated_field!(Transform::rotation),
79            UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
80                Quat::IDENTITY,
81                Quat::from_axis_angle(Vec3::Y, PI / 2.),
82                Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
83                Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
84                Quat::IDENTITY,
85            ]))
86            .expect("Failed to build rotation curve"),
87        ),
88    );
89    // If a curve in an animation is shorter than the other, it will not repeat
90    // until all other curves are finished. In that case, another animation should
91    // be created for each part that would have a different duration / period.
92    let satellite_animation_target_id = AnimationTargetId::from_names(
93        [planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
94    );
95    animation.add_curve_to_target(
96        satellite_animation_target_id,
97        AnimatableCurve::new(
98            animated_field!(Transform::scale),
99            UnevenSampleAutoCurve::new(
100                [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
101                    .into_iter()
102                    .zip([
103                        Vec3::splat(0.8),
104                        Vec3::splat(1.2),
105                        Vec3::splat(0.8),
106                        Vec3::splat(1.2),
107                        Vec3::splat(0.8),
108                        Vec3::splat(1.2),
109                        Vec3::splat(0.8),
110                        Vec3::splat(1.2),
111                        Vec3::splat(0.8),
112                    ]),
113            )
114            .expect("Failed to build scale curve"),
115        ),
116    );
117    // There can be more than one curve targeting the same entity path.
118    animation.add_curve_to_target(
119        AnimationTargetId::from_names(
120            [planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
121        ),
122        AnimatableCurve::new(
123            animated_field!(Transform::rotation),
124            UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
125                Quat::IDENTITY,
126                Quat::from_axis_angle(Vec3::Y, PI / 2.),
127                Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
128                Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
129                Quat::IDENTITY,
130            ]))
131            .expect("should be able to build translation curve because we pass in valid samples"),
132        ),
133    );
134
135    // Create the animation graph
136    let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
137
138    // Create the animation player, and set it to repeat
139    let mut player = AnimationPlayer::default();
140    player.play(animation_index).repeat();
141
142    // Create the scene that will be animated
143    // First entity is the planet
144    let planet_entity = commands
145        .spawn((
146            Mesh3d(meshes.add(Sphere::default())),
147            MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
148            // Add the animation graph and player
149            planet,
150            AnimationGraphHandle(graphs.add(graph)),
151            player,
152        ))
153        .id();
154    commands.entity(planet_entity).insert((
155        AnimationTarget {
156            id: planet_animation_target_id,
157            player: planet_entity,
158        },
159        children![(
160            Transform::default(),
161            Visibility::default(),
162            orbit_controller,
163            AnimationTarget {
164                id: orbit_controller_animation_target_id,
165                player: planet_entity,
166            },
167            children![(
168                Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
169                MeshMaterial3d(materials.add(Color::srgb(0.3, 0.9, 0.3))),
170                Transform::from_xyz(1.5, 0.0, 0.0),
171                AnimationTarget {
172                    id: satellite_animation_target_id,
173                    player: planet_entity,
174                },
175                satellite,
176            )],
177        )],
178    ));
179}
Source

pub fn from_scaled_axis(v: Vec3) -> Quat

Create a quaternion that rotates v.length() radians around v.normalize().

from_scaled_axis(Vec3::ZERO) results in the identity quaternion.

Examples found in repository?
examples/3d/mesh_ray_cast.rs (line 82)
71fn setup(
72    mut commands: Commands,
73    mut meshes: ResMut<Assets<Mesh>>,
74    mut materials: ResMut<Assets<StandardMaterial>>,
75) {
76    // Make a box of planes facing inward so the laser gets trapped inside
77    let plane_mesh = meshes.add(Plane3d::default());
78    let plane_material = materials.add(Color::from(css::GRAY).with_alpha(0.01));
79    let create_plane = move |translation, rotation| {
80        (
81            Transform::from_translation(translation)
82                .with_rotation(Quat::from_scaled_axis(rotation)),
83            Mesh3d(plane_mesh.clone()),
84            MeshMaterial3d(plane_material.clone()),
85        )
86    };
87
88    commands.spawn(create_plane(vec3(0.0, 0.5, 0.0), Vec3::X * PI));
89    commands.spawn(create_plane(vec3(0.0, -0.5, 0.0), Vec3::ZERO));
90    commands.spawn(create_plane(vec3(0.5, 0.0, 0.0), Vec3::Z * FRAC_PI_2));
91    commands.spawn(create_plane(vec3(-0.5, 0.0, 0.0), Vec3::Z * -FRAC_PI_2));
92    commands.spawn(create_plane(vec3(0.0, 0.0, 0.5), Vec3::X * -FRAC_PI_2));
93    commands.spawn(create_plane(vec3(0.0, 0.0, -0.5), Vec3::X * FRAC_PI_2));
94
95    // Light
96    commands.spawn((
97        DirectionalLight::default(),
98        Transform::from_rotation(Quat::from_euler(EulerRot::XYZ, -0.1, 0.2, 0.0)),
99    ));
100
101    // Camera
102    commands.spawn((
103        Camera3d::default(),
104        Transform::from_xyz(1.5, 1.5, 1.5).looking_at(Vec3::ZERO, Vec3::Y),
105        Tonemapping::TonyMcMapface,
106        Bloom::default(),
107    ));
108}
Source

pub fn from_rotation_x(angle: f32) -> Quat

Creates a quaternion from the angle (in radians) around the x axis.

Examples found in repository?
examples/math/sampling_primitives.rs (line 671)
668fn update_camera(mut camera: Query<(&mut Transform, &CameraRig), Changed<CameraRig>>) {
669    for (mut transform, rig) in camera.iter_mut() {
670        let looking_direction =
671            Quat::from_rotation_y(-rig.yaw) * Quat::from_rotation_x(rig.pitch) * Vec3::Z;
672        transform.translation = rig.target - rig.distance * looking_direction;
673        transform.look_at(rig.target, Dir3::Y);
674    }
675}
More examples
Hide additional examples
examples/3d/light_textures.rs (line 364)
357fn draw_gizmos(mut gizmos: Gizmos, spotlight: Query<(&GlobalTransform, &SpotLight, &Visibility)>) {
358    if let Ok((global_transform, spotlight, visibility)) = spotlight.single()
359        && visibility != Visibility::Hidden
360    {
361        gizmos.primitive_3d(
362            &Cone::new(7.0 * spotlight.outer_angle, 7.0),
363            Isometry3d {
364                rotation: global_transform.rotation() * Quat::from_rotation_x(FRAC_PI_2),
365                translation: global_transform.translation_vec3a() * 0.5,
366            },
367            YELLOW,
368        );
369    }
370}
examples/shader_advanced/render_depth_to_texture.rs (line 406)
388fn draw_camera_gizmo(cameras: Query<(&Camera, &GlobalTransform)>, mut gizmos: Gizmos) {
389    for (camera, transform) in &cameras {
390        // As above, we use the order as a cheap tag to tell the depth texture
391        // apart from the main texture.
392        if camera.order >= 0 {
393            continue;
394        }
395
396        // Draw a cone representing the camera.
397        gizmos.primitive_3d(
398            &Cone {
399                radius: 1.0,
400                height: 3.0,
401            },
402            Isometry3d::new(
403                transform.translation(),
404                // We have to rotate here because `Cone` primitives are oriented
405                // along +Y and cameras point along +Z.
406                transform.rotation() * Quat::from_rotation_x(FRAC_PI_2),
407            ),
408            LIME,
409        );
410    }
411}
examples/3d/3d_scene.rs (line 22)
13fn setup(
14    mut commands: Commands,
15    mut meshes: ResMut<Assets<Mesh>>,
16    mut materials: ResMut<Assets<StandardMaterial>>,
17) {
18    // circular base
19    commands.spawn((
20        Mesh3d(meshes.add(Circle::new(4.0))),
21        MeshMaterial3d(materials.add(Color::WHITE)),
22        Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
23    ));
24    // cube
25    commands.spawn((
26        Mesh3d(meshes.add(Cuboid::new(1.0, 1.0, 1.0))),
27        MeshMaterial3d(materials.add(Color::srgb_u8(124, 144, 255))),
28        Transform::from_xyz(0.0, 0.5, 0.0),
29    ));
30    // light
31    commands.spawn((
32        PointLight {
33            shadows_enabled: true,
34            ..default()
35        },
36        Transform::from_xyz(4.0, 8.0, 4.0),
37    ));
38    // camera
39    commands.spawn((
40        Camera3d::default(),
41        Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
42    ));
43}
examples/animation/animation_graph.rs (line 253)
221fn setup_scene(
222    mut commands: Commands,
223    asset_server: Res<AssetServer>,
224    mut meshes: ResMut<Assets<Mesh>>,
225    mut materials: ResMut<Assets<StandardMaterial>>,
226) {
227    commands.spawn((
228        Camera3d::default(),
229        Transform::from_xyz(-10.0, 5.0, 13.0).looking_at(Vec3::new(0., 1., 0.), Vec3::Y),
230    ));
231
232    commands.spawn((
233        PointLight {
234            intensity: 10_000_000.0,
235            shadows_enabled: true,
236            ..default()
237        },
238        Transform::from_xyz(-4.0, 8.0, 13.0),
239    ));
240
241    commands.spawn((
242        SceneRoot(
243            asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
244        ),
245        Transform::from_scale(Vec3::splat(0.07)),
246    ));
247
248    // Ground
249
250    commands.spawn((
251        Mesh3d(meshes.add(Circle::new(7.0))),
252        MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
253        Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
254    ));
255}
examples/remote/server.rs (line 35)
26fn setup(
27    mut commands: Commands,
28    mut meshes: ResMut<Assets<Mesh>>,
29    mut materials: ResMut<Assets<StandardMaterial>>,
30) {
31    // circular base
32    commands.spawn((
33        Mesh3d(meshes.add(Circle::new(4.0))),
34        MeshMaterial3d(materials.add(Color::WHITE)),
35        Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
36    ));
37
38    // cube
39    commands.spawn((
40        Mesh3d(meshes.add(Cuboid::new(1.0, 1.0, 1.0))),
41        MeshMaterial3d(materials.add(Color::srgb_u8(124, 144, 255))),
42        Transform::from_xyz(0.0, 0.5, 0.0),
43        Cube(1.0),
44    ));
45
46    // test resource
47    commands.insert_resource(TestResource {
48        foo: Vec2::new(1.0, -1.0),
49        bar: false,
50    });
51
52    // light
53    commands.spawn((
54        PointLight {
55            shadows_enabled: true,
56            ..default()
57        },
58        Transform::from_xyz(4.0, 8.0, 4.0),
59    ));
60
61    // camera
62    commands.spawn((
63        Camera3d::default(),
64        Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
65    ));
66}
Source

pub fn from_rotation_y(angle: f32) -> Quat

Creates a quaternion from the angle (in radians) around the y axis.

Examples found in repository?
examples/gizmos/light_gizmos.rs (line 140)
139fn rotate_camera(mut transform: Single<&mut Transform, With<Camera>>, time: Res<Time>) {
140    transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(time.delta_secs() / 2.));
141}
More examples
Hide additional examples
examples/stress_tests/many_cameras_lights.rs (line 101)
99fn rotate_cameras(time: Res<Time>, mut query: Query<&mut Transform, With<Camera>>) {
100    for mut transform in query.iter_mut() {
101        transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(time.delta_secs()));
102    }
103}
examples/3d/clearcoat.rs (line 249)
246fn animate_spheres(mut spheres: Query<&mut Transform, With<ExampleSphere>>, time: Res<Time>) {
247    let now = time.elapsed_secs();
248    for mut transform in spheres.iter_mut() {
249        transform.rotation = Quat::from_rotation_y(SPHERE_ROTATION_SPEED * now);
250    }
251}
examples/3d/specular_tint.rs (line 138)
135fn rotate_camera(mut cameras: Query<&mut Transform, With<Camera3d>>) {
136    for mut camera_transform in cameras.iter_mut() {
137        camera_transform.translation =
138            Quat::from_rotation_y(ROTATION_SPEED) * camera_transform.translation;
139        camera_transform.look_at(Vec3::ZERO, Vec3::Y);
140    }
141}
examples/camera/2d_on_ui.rs (line 69)
66fn rotate_sprite(time: Res<Time>, mut sprite: Single<&mut Transform, With<Sprite>>) {
67    // Use any of the regular 2D rendering features, for example rotating a sprite via its `Transform`.
68    sprite.rotation *=
69        Quat::from_rotation_z(time.delta_secs() * 0.5) * Quat::from_rotation_y(time.delta_secs());
70}
examples/3d/fog_volumes.rs (line 77)
74fn rotate_camera(mut cameras: Query<&mut Transform, With<Camera3d>>) {
75    for mut camera_transform in cameras.iter_mut() {
76        *camera_transform =
77            Transform::from_translation(Quat::from_rotation_y(0.01) * camera_transform.translation)
78                .looking_at(vec3(0.0, 0.5, 0.0), Vec3::Y);
79    }
80}
Source

pub fn from_rotation_z(angle: f32) -> Quat

Creates a quaternion from the angle (in radians) around the z axis.

Examples found in repository?
examples/math/bounding_2d.rs (line 41)
39fn spin(time: Res<Time>, mut query: Query<&mut Transform, With<Spin>>) {
40    for mut transform in query.iter_mut() {
41        transform.rotation *= Quat::from_rotation_z(time.delta_secs() / 5.);
42    }
43}
More examples
Hide additional examples
examples/2d/text2d.rs (line 190)
185fn animate_rotation(
186    time: Res<Time>,
187    mut query: Query<&mut Transform, (With<Text2d>, With<AnimateRotation>)>,
188) {
189    for mut transform in &mut query {
190        transform.rotation = Quat::from_rotation_z(ops::cos(time.elapsed_secs()));
191    }
192}
examples/shader/shader_prepass.rs (line 181)
178fn rotate(mut q: Query<&mut Transform, With<Rotates>>, time: Res<Time>) {
179    for mut t in q.iter_mut() {
180        let rot = (ops::sin(time.elapsed_secs()) * 0.5 + 0.5) * std::f32::consts::PI * 2.0;
181        t.rotation = Quat::from_rotation_z(rot);
182    }
183}
examples/math/custom_primitives.rs (line 175)
171fn rotate_2d_shapes(mut shapes: Query<&mut Transform, With<Shape2d>>, time: Res<Time>) {
172    let elapsed_seconds = time.elapsed_secs();
173
174    for mut transform in shapes.iter_mut() {
175        transform.rotation = Quat::from_rotation_z(elapsed_seconds);
176    }
177}
examples/camera/2d_on_ui.rs (line 69)
66fn rotate_sprite(time: Res<Time>, mut sprite: Single<&mut Transform, With<Sprite>>) {
67    // Use any of the regular 2D rendering features, for example rotating a sprite via its `Transform`.
68    sprite.rotation *=
69        Quat::from_rotation_z(time.delta_secs() * 0.5) * Quat::from_rotation_y(time.delta_secs());
70}
tests/3d/test_invalid_skinned_mesh.rs (line 226)
223fn update_animated_joints(time: Res<Time>, query: Query<&mut Transform, With<AnimatedJoint>>) {
224    for mut transform in query {
225        let angle = TAU * 4.0 * ops::cos((time.elapsed_secs() / 8.0) * TAU);
226        let rotation = Quat::from_rotation_z(angle);
227
228        transform.rotation = rotation;
229        transform.translation = rotation.mul_vec3(Vec3::new(0.0, 1.3, 0.0));
230    }
231}
Source

pub fn from_euler(euler: EulerRot, a: f32, b: f32, c: f32) -> Quat

Creates a quaternion from the given Euler rotation sequence and the angles (in radians).

Examples found in repository?
examples/shader/extended_material_bindless.rs (line 153)
150fn rotate_sphere(mut meshes: Query<&mut Transform, With<Mesh3d>>, time: Res<Time>) {
151    for mut transform in &mut meshes {
152        transform.rotation =
153            Quat::from_euler(EulerRot::YXZ, -time.elapsed_secs(), FRAC_PI_2 * 3.0, 0.0);
154    }
155}
More examples
Hide additional examples
examples/3d/ssr.rs (line 295)
290fn rotate_model(
291    mut query: Query<&mut Transform, Or<(With<CubeModel>, With<FlightHelmetModel>)>>,
292    time: Res<Time>,
293) {
294    for mut transform in query.iter_mut() {
295        transform.rotation = Quat::from_euler(EulerRot::XYZ, 0.0, time.elapsed_secs(), 0.0);
296    }
297}
examples/3d/occlusion_culling.rs (lines 372-377)
370fn spin_large_cube(mut large_cubes: Query<&mut Transform, With<LargeCube>>) {
371    for mut transform in &mut large_cubes {
372        transform.rotate(Quat::from_euler(
373            EulerRot::XYZ,
374            0.13 * ROTATION_SPEED,
375            0.29 * ROTATION_SPEED,
376            0.35 * ROTATION_SPEED,
377        ));
378    }
379}
380
381/// Spawns a directional light to illuminate the scene.
382fn spawn_light(commands: &mut Commands) {
383    commands
384        .spawn(DirectionalLight::default())
385        .insert(Transform::from_rotation(Quat::from_euler(
386            EulerRot::ZYX,
387            0.0,
388            PI * -0.15,
389            PI * -0.15,
390        )));
391}
examples/3d/load_gltf.rs (lines 56-61)
51fn animate_light_direction(
52    time: Res<Time>,
53    mut query: Query<&mut Transform, With<DirectionalLight>>,
54) {
55    for mut transform in &mut query {
56        transform.rotation = Quat::from_euler(
57            EulerRot::ZYX,
58            0.0,
59            time.elapsed_secs() * PI / 5.0,
60            -FRAC_PI_4,
61        );
62    }
63}
examples/3d/query_gltf_primitives.rs (line 61)
54fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
55    commands.spawn((
56        Camera3d::default(),
57        Transform::from_xyz(4.0, 4.0, 12.0).looking_at(Vec3::new(0.0, 0.0, 0.5), Vec3::Y),
58    ));
59
60    commands.spawn((
61        Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
62        DirectionalLight::default(),
63    ));
64
65    commands.spawn(SceneRoot(asset_server.load(
66        GltfAssetLabel::Scene(0).from_asset("models/GltfPrimitives/gltf_primitives.glb"),
67    )));
68}
examples/3d/spotlight.rs (lines 139-144)
137fn light_sway(time: Res<Time>, mut query: Query<(&mut Transform, &mut SpotLight)>) {
138    for (mut transform, mut angles) in query.iter_mut() {
139        transform.rotation = Quat::from_euler(
140            EulerRot::XYZ,
141            -FRAC_PI_2 + ops::sin(time.elapsed_secs() * 0.67 * 3.0) * 0.5,
142            ops::sin(time.elapsed_secs() * 3.0) * 0.5,
143            0.0,
144        );
145        let angle = (ops::sin(time.elapsed_secs() * 1.2) + 1.0) * (FRAC_PI_4 - 0.1);
146        angles.inner_angle = angle * 0.8;
147        angles.outer_angle = angle;
148    }
149}
Source

pub fn from_mat3(mat: &Mat3) -> Quat

Creates a quaternion from a 3x3 rotation matrix.

Note if the input matrix contain scales, shears, or other non-rotation transformations then the resulting quaternion will be ill-defined.

§Panics

Will panic if any input matrix column is not normalized when glam_assert is enabled.

Examples found in repository?
examples/math/render_primitives.rs (line 598)
591fn rotate_primitive_2d_meshes(
592    mut primitives_2d: Query<
593        (&mut Transform, &ViewVisibility),
594        (With<PrimitiveData>, With<MeshDim2>),
595    >,
596    time: Res<Time>,
597) {
598    let rotation_2d = Quat::from_mat3(&Mat3::from_angle(time.elapsed_secs()));
599    primitives_2d
600        .iter_mut()
601        .filter(|(_, vis)| vis.get())
602        .for_each(|(mut transform, _)| {
603            transform.rotation = rotation_2d;
604        });
605}
More examples
Hide additional examples
examples/ecs/fallible_params.rs (line 151)
136fn track_targets(
137    // `Single` ensures the system runs ONLY when exactly one matching entity exists.
138    mut player: Single<(&mut Transform, &Player)>,
139    // `Option<Single>` never prevents the system from running, but will be `None` if there is not exactly one matching entity.
140    enemy: Option<Single<&Transform, (With<Enemy>, Without<Player>)>>,
141    time: Res<Time>,
142) {
143    let (player_transform, player) = &mut *player;
144    if let Some(enemy_transform) = enemy {
145        // Enemy found, rotate and move towards it.
146        let delta = enemy_transform.translation - player_transform.translation;
147        let distance = delta.length();
148        let front = delta / distance;
149        let up = Vec3::Z;
150        let side = front.cross(up);
151        player_transform.rotation = Quat::from_mat3(&Mat3::from_cols(side, front, up));
152        let max_step = distance - player.min_follow_radius;
153        if 0.0 < max_step {
154            let velocity = (player.speed * time.delta_secs()).min(max_step);
155            player_transform.translation += front * velocity;
156        }
157    } else {
158        // 0 or multiple enemies found, keep searching.
159        player_transform.rotate_axis(Dir3::Z, player.rotation_speed * time.delta_secs());
160    }
161}
Source

pub fn from_mat3a(mat: &Mat3A) -> Quat

Creates a quaternion from a 3x3 SIMD aligned rotation matrix.

Note if the input matrix contain scales, shears, or other non-rotation transformations then the resulting quaternion will be ill-defined.

§Panics

Will panic if any input matrix column is not normalized when glam_assert is enabled.

Source

pub fn from_mat4(mat: &Mat4) -> Quat

Creates a quaternion from the upper 3x3 rotation matrix inside a homogeneous 4x4 matrix.

Note if the upper 3x3 matrix contain scales, shears, or other non-rotation transformations then the resulting quaternion will be ill-defined.

§Panics

Will panic if any column of the upper 3x3 rotation matrix is not normalized when glam_assert is enabled.

Source

pub fn from_rotation_arc(from: Vec3, to: Vec3) -> Quat

Gets the minimal rotation for transforming from to to. The rotation is in the plane spanned by the two vectors. Will rotate at most 180 degrees.

The inputs must be unit vectors.

from_rotation_arc(from, to) * from ≈ to.

For near-singular cases (from≈to and from≈-to) the current implementation is only accurate to about 0.001 (for f32).

§Panics

Will panic if from or to are not normalized when glam_assert is enabled.

Examples found in repository?
examples/math/render_primitives.rs (lines 614-623)
607fn rotate_primitive_3d_meshes(
608    mut primitives_3d: Query<
609        (&mut Transform, &ViewVisibility),
610        (With<PrimitiveData>, With<MeshDim3>),
611    >,
612    time: Res<Time>,
613) {
614    let rotation_3d = Quat::from_rotation_arc(
615        Vec3::Z,
616        Vec3::new(
617            ops::sin(time.elapsed_secs()),
618            ops::cos(time.elapsed_secs()),
619            ops::sin(time.elapsed_secs()) * 0.5,
620        )
621        .try_normalize()
622        .unwrap_or(Vec3::Z),
623    );
624    primitives_3d
625        .iter_mut()
626        .filter(|(_, vis)| vis.get())
627        .for_each(|(mut transform, _)| {
628            transform.rotation = rotation_3d;
629        });
630}
631
632fn draw_gizmos_3d(mut gizmos: Gizmos, state: Res<State<PrimitiveSelected>>, time: Res<Time>) {
633    const POSITION: Vec3 = Vec3::new(LEFT_RIGHT_OFFSET_3D, 0.0, 0.0);
634    let rotation = Quat::from_rotation_arc(
635        Vec3::Z,
636        Vec3::new(
637            ops::sin(time.elapsed_secs()),
638            ops::cos(time.elapsed_secs()),
639            ops::sin(time.elapsed_secs()) * 0.5,
640        )
641        .try_normalize()
642        .unwrap_or(Vec3::Z),
643    );
644    let isometry = Isometry3d::new(POSITION, rotation);
645    let color = Color::WHITE;
646    let resolution = 10;
647
648    #[expect(
649        clippy::match_same_arms,
650        reason = "Certain primitives don't have any 3D rendering support yet."
651    )]
652    match state.get() {
653        PrimitiveSelected::RectangleAndCuboid => {
654            gizmos.primitive_3d(&CUBOID, isometry, color);
655        }
656        PrimitiveSelected::CircleAndSphere => drop(
657            gizmos
658                .primitive_3d(&SPHERE, isometry, color)
659                .resolution(resolution),
660        ),
661        PrimitiveSelected::Ellipse => {}
662        PrimitiveSelected::Triangle => gizmos.primitive_3d(&TRIANGLE_3D, isometry, color),
663        PrimitiveSelected::Plane => drop(gizmos.primitive_3d(&PLANE_3D, isometry, color)),
664        PrimitiveSelected::Line => gizmos.primitive_3d(&LINE3D, isometry, color),
665        PrimitiveSelected::Segment => gizmos.primitive_3d(&SEGMENT_3D, isometry, color),
666        PrimitiveSelected::Polyline => gizmos.primitive_3d(
667            &Polyline3d {
668                vertices: vec![
669                    Vec3::new(-BIG_3D, -SMALL_3D, -SMALL_3D),
670                    Vec3::new(SMALL_3D, SMALL_3D, 0.0),
671                    Vec3::new(-SMALL_3D, -SMALL_3D, 0.0),
672                    Vec3::new(BIG_3D, SMALL_3D, SMALL_3D),
673                ],
674            },
675            isometry,
676            color,
677        ),
678        PrimitiveSelected::Polygon => {}
679        PrimitiveSelected::RegularPolygon => {}
680        PrimitiveSelected::Capsule => drop(
681            gizmos
682                .primitive_3d(&CAPSULE_3D, isometry, color)
683                .resolution(resolution),
684        ),
685        PrimitiveSelected::Cylinder => drop(
686            gizmos
687                .primitive_3d(&CYLINDER, isometry, color)
688                .resolution(resolution),
689        ),
690        PrimitiveSelected::Cone => drop(
691            gizmos
692                .primitive_3d(&CONE, isometry, color)
693                .resolution(resolution),
694        ),
695        PrimitiveSelected::ConicalFrustum => {
696            gizmos.primitive_3d(&CONICAL_FRUSTUM, isometry, color);
697        }
698
699        PrimitiveSelected::Torus => drop(
700            gizmos
701                .primitive_3d(&TORUS, isometry, color)
702                .minor_resolution(resolution)
703                .major_resolution(resolution),
704        ),
705        PrimitiveSelected::Tetrahedron => {
706            gizmos.primitive_3d(&TETRAHEDRON, isometry, color);
707        }
708
709        PrimitiveSelected::Arc => {}
710        PrimitiveSelected::CircularSector => {}
711        PrimitiveSelected::CircularSegment => {}
712    }
713}
More examples
Hide additional examples
examples/2d/rotation.rs (line 167)
154fn snap_to_player_system(
155    mut query: Query<&mut Transform, (With<SnapToPlayer>, Without<Player>)>,
156    player_transform: Single<&Transform, With<Player>>,
157) {
158    // Get the player translation in 2D
159    let player_translation = player_transform.translation.xy();
160
161    for mut enemy_transform in &mut query {
162        // Get the vector from the enemy ship to the player ship in 2D and normalize it.
163        let to_player = (player_translation - enemy_transform.translation.xy()).normalize();
164
165        // Get the quaternion to rotate from the initial enemy facing direction to the direction
166        // facing the player
167        let rotate_to_player = Quat::from_rotation_arc(Vec3::Y, to_player.extend(0.));
168
169        // Rotate the enemy to face the player
170        enemy_transform.rotation = rotate_to_player;
171    }
172}
examples/3d/3d_viewport_to_world.rs (line 34)
13fn draw_cursor(
14    camera_query: Single<(&Camera, &GlobalTransform)>,
15    ground: Single<&GlobalTransform, With<Ground>>,
16    window: Single<&Window>,
17    mut gizmos: Gizmos,
18) {
19    let (camera, camera_transform) = *camera_query;
20
21    if let Some(cursor_position) = window.cursor_position()
22        // Calculate a ray pointing from the camera into the world based on the cursor's position.
23        && let Ok(ray) = camera.viewport_to_world(camera_transform, cursor_position)
24        // Calculate if and at what distance the ray is hitting the ground plane.
25        && let Some(distance) =
26            ray.intersect_plane(ground.translation(), InfinitePlane3d::new(ground.up()))
27    {
28        let point = ray.get_point(distance);
29
30        // Draw a circle just above the ground plane at that position.
31        gizmos.circle(
32            Isometry3d::new(
33                point + ground.up() * 0.01,
34                Quat::from_rotation_arc(Vec3::Z, ground.up().as_vec3()),
35            ),
36            0.2,
37            Color::WHITE,
38        );
39    }
40}
examples/gizmos/3d_gizmos.rs (line 180)
98fn draw_example_collection(
99    mut gizmos: Gizmos,
100    mut my_gizmos: Gizmos<MyRoundGizmos>,
101    time: Res<Time>,
102) {
103    gizmos.grid(
104        Quat::from_rotation_x(PI / 2.),
105        UVec2::splat(20),
106        Vec2::new(2., 2.),
107        // Light gray
108        LinearRgba::gray(0.65),
109    );
110    gizmos.grid(
111        Isometry3d::new(Vec3::splat(10.0), Quat::from_rotation_x(PI / 3. * 2.)),
112        UVec2::splat(20),
113        Vec2::new(2., 2.),
114        PURPLE,
115    );
116    gizmos.sphere(Vec3::splat(10.0), 1.0, PURPLE);
117
118    gizmos
119        .primitive_3d(
120            &Plane3d {
121                normal: Dir3::Y,
122                half_size: Vec2::splat(1.0),
123            },
124            Isometry3d::new(
125                Vec3::splat(4.0) + Vec2::from(ops::sin_cos(time.elapsed_secs())).extend(0.0),
126                Quat::from_rotation_x(PI / 2. + time.elapsed_secs()),
127            ),
128            GREEN,
129        )
130        .cell_count(UVec2::new(5, 10))
131        .spacing(Vec2::new(0.2, 0.1));
132
133    gizmos.cuboid(
134        Transform::from_translation(Vec3::Y * 0.5).with_scale(Vec3::splat(1.25)),
135        BLACK,
136    );
137    gizmos.rect(
138        Isometry3d::new(
139            Vec3::new(ops::cos(time.elapsed_secs()) * 2.5, 1., 0.),
140            Quat::from_rotation_y(PI / 2.),
141        ),
142        Vec2::splat(2.),
143        LIME,
144    );
145
146    gizmos.cross(Vec3::new(-1., 1., 1.), 0.5, FUCHSIA);
147
148    let domain = Interval::EVERYWHERE;
149    let curve = FunctionCurve::new(domain, |t| {
150        (Vec2::from(ops::sin_cos(t * 10.0))).extend(t - 6.0)
151    });
152    let resolution = ((ops::sin(time.elapsed_secs()) + 1.0) * 100.0) as usize;
153    let times_and_colors = (0..=resolution)
154        .map(|n| n as f32 / resolution as f32)
155        .map(|t| t * 5.0)
156        .map(|t| (t, TEAL.mix(&HOT_PINK, t / 5.0)));
157    gizmos.curve_gradient_3d(curve, times_and_colors);
158
159    my_gizmos.sphere(Vec3::new(1., 0.5, 0.), 0.5, RED);
160
161    my_gizmos
162        .rounded_cuboid(Vec3::new(-2.0, 0.75, -0.75), Vec3::splat(0.9), TURQUOISE)
163        .edge_radius(0.1)
164        .arc_resolution(4);
165
166    for y in [0., 0.5, 1.] {
167        gizmos.ray(
168            Vec3::new(1., y, 0.),
169            Vec3::new(-3., ops::sin(time.elapsed_secs() * 3.), 0.),
170            BLUE,
171        );
172    }
173
174    my_gizmos
175        .arc_3d(
176            180.0_f32.to_radians(),
177            0.2,
178            Isometry3d::new(
179                Vec3::ONE,
180                Quat::from_rotation_arc(Vec3::Y, Vec3::ONE.normalize()),
181            ),
182            ORANGE,
183        )
184        .resolution(10);
185
186    // Circles have 32 line-segments by default.
187    my_gizmos.circle(Quat::from_rotation_arc(Vec3::Z, Vec3::Y), 3., BLACK);
188
189    // You may want to increase this for larger circles or spheres.
190    my_gizmos
191        .circle(Quat::from_rotation_arc(Vec3::Z, Vec3::Y), 3.1, NAVY)
192        .resolution(64);
193    my_gizmos
194        .sphere(Isometry3d::IDENTITY, 3.2, BLACK)
195        .resolution(64);
196
197    gizmos.arrow(Vec3::ZERO, Vec3::splat(1.5), YELLOW);
198
199    // You can create more complex arrows using the arrow builder.
200    gizmos
201        .arrow(Vec3::new(2., 0., 2.), Vec3::new(2., 2., 2.), ORANGE_RED)
202        .with_double_end()
203        .with_tip_length(0.5);
204}
Source

pub fn from_rotation_arc_colinear(from: Vec3, to: Vec3) -> Quat

Gets the minimal rotation for transforming from to either to or -to. This means that the resulting quaternion will rotate from so that it is colinear with to.

The rotation is in the plane spanned by the two vectors. Will rotate at most 90 degrees.

The inputs must be unit vectors.

to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1.

§Panics

Will panic if from or to are not normalized when glam_assert is enabled.

Source

pub fn from_rotation_arc_2d(from: Vec2, to: Vec2) -> Quat

Gets the minimal rotation for transforming from to to. The resulting rotation is around the z axis. Will rotate at most 180 degrees.

The inputs must be unit vectors.

from_rotation_arc_2d(from, to) * from ≈ to.

For near-singular cases (from≈to and from≈-to) the current implementation is only accurate to about 0.001 (for f32).

§Panics

Will panic if from or to are not normalized when glam_assert is enabled.

Source

pub fn look_to_lh(dir: Vec3, up: Vec3) -> Quat

Creates a quaterion rotation from a facing direction and an up direction.

For a left-handed view coordinate system with +X=right, +Y=up and +Z=forward.

§Panics

Will panic if up is not normalized when glam_assert is enabled.

Source

pub fn look_to_rh(dir: Vec3, up: Vec3) -> Quat

Creates a quaterion rotation from facing direction and an up direction.

For a right-handed view coordinate system with +X=right, +Y=up and +Z=back.

§Panics

Will panic if dir and up are not normalized when glam_assert is enabled.

Source

pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Quat

Creates a left-handed view matrix using a camera position, a focal point, and an up direction.

For a left-handed view coordinate system with +X=right, +Y=up and +Z=forward.

§Panics

Will panic if up is not normalized when glam_assert is enabled.

Source

pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Quat

Creates a right-handed view matrix using a camera position, an up direction, and a focal point.

For a right-handed view coordinate system with +X=right, +Y=up and +Z=back.

§Panics

Will panic if up is not normalized when glam_assert is enabled.

Source

pub fn to_axis_angle(self) -> (Vec3, f32)

Returns the rotation axis (normalized) and angle (in radians) of self.

Source

pub fn to_scaled_axis(self) -> Vec3

Returns the rotation axis scaled by the rotation in radians.

Examples found in repository?
examples/math/custom_primitives.rs (line 187)
180fn bounding_shapes_2d(
181    shapes: Query<&Transform, With<Shape2d>>,
182    mut gizmos: Gizmos,
183    bounding_shape: Res<State<BoundingShape>>,
184) {
185    for transform in shapes.iter() {
186        // Get the rotation angle from the 3D rotation.
187        let rotation = transform.rotation.to_scaled_axis().z;
188        let rotation = Rot2::radians(rotation);
189        let isometry = Isometry2d::new(transform.translation.xy(), rotation);
190
191        match bounding_shape.get() {
192            BoundingShape::None => (),
193            BoundingShape::BoundingBox => {
194                // Get the AABB of the primitive with the rotation and translation of the mesh.
195                let aabb = HEART.aabb_2d(isometry);
196                gizmos.rect_2d(aabb.center(), aabb.half_size() * 2., WHITE);
197            }
198            BoundingShape::BoundingSphere => {
199                // Get the bounding sphere of the primitive with the rotation and translation of the mesh.
200                let bounding_circle = HEART.bounding_circle(isometry);
201                gizmos
202                    .circle_2d(bounding_circle.center(), bounding_circle.radius(), WHITE)
203                    .resolution(64);
204            }
205        }
206    }
207}
Source

pub fn to_euler(self, order: EulerRot) -> (f32, f32, f32)

Returns the rotation angles for the given euler rotation sequence.

Examples found in repository?
examples/2d/mesh2d_arcs.rs (line 111)
104fn draw_bounds<Shape: Bounded2d + Send + Sync + 'static>(
105    q: Query<(&DrawBounds<Shape>, &GlobalTransform)>,
106    mut gizmos: Gizmos,
107) {
108    for (shape, transform) in &q {
109        let (_, rotation, translation) = transform.to_scale_rotation_translation();
110        let translation = translation.truncate();
111        let rotation = rotation.to_euler(EulerRot::XYZ).2;
112        let isometry = Isometry2d::new(translation, Rot2::radians(rotation));
113
114        let aabb = shape.0.aabb_2d(isometry);
115        gizmos.rect_2d(aabb.center(), aabb.half_size() * 2.0, RED);
116
117        let bounding_circle = shape.0.bounding_circle(isometry);
118        gizmos.circle_2d(bounding_circle.center, bounding_circle.radius(), BLUE);
119    }
120}
More examples
Hide additional examples
examples/math/bounding_2d.rs (line 105)
101fn render_shapes(mut gizmos: Gizmos, query: Query<(&Shape, &Transform)>) {
102    let color = GRAY;
103    for (shape, transform) in query.iter() {
104        let translation = transform.translation.xy();
105        let rotation = transform.rotation.to_euler(EulerRot::YXZ).2;
106        let isometry = Isometry2d::new(translation, Rot2::radians(rotation));
107        match shape {
108            Shape::Rectangle(r) => {
109                gizmos.primitive_2d(r, isometry, color);
110            }
111            Shape::Circle(c) => {
112                gizmos.primitive_2d(c, isometry, color);
113            }
114            Shape::Triangle(t) => {
115                gizmos.primitive_2d(t, isometry, color);
116            }
117            Shape::Line(l) => {
118                gizmos.primitive_2d(l, isometry, color);
119            }
120            Shape::Capsule(c) => {
121                gizmos.primitive_2d(c, isometry, color);
122            }
123            Shape::Polygon(p) => {
124                gizmos.primitive_2d(p, isometry, color);
125            }
126        }
127    }
128}
129
130#[derive(Component)]
131enum DesiredVolume {
132    Aabb,
133    Circle,
134}
135
136#[derive(Component, Debug)]
137enum CurrentVolume {
138    Aabb(Aabb2d),
139    Circle(BoundingCircle),
140}
141
142fn update_volumes(
143    mut commands: Commands,
144    query: Query<
145        (Entity, &DesiredVolume, &Shape, &Transform),
146        Or<(Changed<DesiredVolume>, Changed<Shape>, Changed<Transform>)>,
147    >,
148) {
149    for (entity, desired_volume, shape, transform) in query.iter() {
150        let translation = transform.translation.xy();
151        let rotation = transform.rotation.to_euler(EulerRot::YXZ).2;
152        let isometry = Isometry2d::new(translation, Rot2::radians(rotation));
153        match desired_volume {
154            DesiredVolume::Aabb => {
155                let aabb = match shape {
156                    Shape::Rectangle(r) => r.aabb_2d(isometry),
157                    Shape::Circle(c) => c.aabb_2d(isometry),
158                    Shape::Triangle(t) => t.aabb_2d(isometry),
159                    Shape::Line(l) => l.aabb_2d(isometry),
160                    Shape::Capsule(c) => c.aabb_2d(isometry),
161                    Shape::Polygon(p) => p.aabb_2d(isometry),
162                };
163                commands.entity(entity).insert(CurrentVolume::Aabb(aabb));
164            }
165            DesiredVolume::Circle => {
166                let circle = match shape {
167                    Shape::Rectangle(r) => r.bounding_circle(isometry),
168                    Shape::Circle(c) => c.bounding_circle(isometry),
169                    Shape::Triangle(t) => t.bounding_circle(isometry),
170                    Shape::Line(l) => l.bounding_circle(isometry),
171                    Shape::Capsule(c) => c.bounding_circle(isometry),
172                    Shape::Polygon(p) => p.bounding_circle(isometry),
173                };
174                commands
175                    .entity(entity)
176                    .insert(CurrentVolume::Circle(circle));
177            }
178        }
179    }
180}
examples/movement/physics_in_fixed_timestep.rs (line 259)
244fn rotate_camera(
245    accumulated_mouse_motion: Res<AccumulatedMouseMotion>,
246    player: Single<(&mut Transform, &CameraSensitivity), With<Camera>>,
247) {
248    let (mut transform, camera_sensitivity) = player.into_inner();
249
250    let delta = accumulated_mouse_motion.delta;
251
252    if delta != Vec2::ZERO {
253        // Note that we are not multiplying by delta time here.
254        // The reason is that for mouse movement, we already get the full movement that happened since the last frame.
255        // This means that if we multiply by delta time, we will get a smaller rotation than intended by the user.
256        let delta_yaw = -delta.x * camera_sensitivity.x;
257        let delta_pitch = -delta.y * camera_sensitivity.y;
258
259        let (yaw, pitch, roll) = transform.rotation.to_euler(EulerRot::YXZ);
260        let yaw = yaw + delta_yaw;
261
262        // If the pitch was ±¹⁄₂ π, the camera would look straight up or down.
263        // When the user wants to move the camera back to the horizon, which way should the camera face?
264        // The camera has no way of knowing what direction was "forward" before landing in that extreme position,
265        // so the direction picked will for all intents and purposes be arbitrary.
266        // Another issue is that for mathematical reasons, the yaw will effectively be flipped when the pitch is at the extremes.
267        // To not run into these issues, we clamp the pitch to a safe range.
268        const PITCH_LIMIT: f32 = FRAC_PI_2 - 0.01;
269        let pitch = (pitch + delta_pitch).clamp(-PITCH_LIMIT, PITCH_LIMIT);
270
271        transform.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
272    }
273}
examples/camera/camera_orbit.rs (line 126)
99fn orbit(
100    mut camera: Single<&mut Transform, With<Camera>>,
101    camera_settings: Res<CameraSettings>,
102    mouse_buttons: Res<ButtonInput<MouseButton>>,
103    mouse_motion: Res<AccumulatedMouseMotion>,
104    time: Res<Time>,
105) {
106    let delta = mouse_motion.delta;
107    let mut delta_roll = 0.0;
108
109    if mouse_buttons.pressed(MouseButton::Left) {
110        delta_roll -= 1.0;
111    }
112    if mouse_buttons.pressed(MouseButton::Right) {
113        delta_roll += 1.0;
114    }
115
116    // Mouse motion is one of the few inputs that should not be multiplied by delta time,
117    // as we are already receiving the full movement since the last frame was rendered. Multiplying
118    // by delta time here would make the movement slower that it should be.
119    let delta_pitch = delta.y * camera_settings.pitch_speed;
120    let delta_yaw = delta.x * camera_settings.yaw_speed;
121
122    // Conversely, we DO need to factor in delta time for mouse button inputs.
123    delta_roll *= camera_settings.roll_speed * time.delta_secs();
124
125    // Obtain the existing pitch, yaw, and roll values from the transform.
126    let (yaw, pitch, roll) = camera.rotation.to_euler(EulerRot::YXZ);
127
128    // Establish the new yaw and pitch, preventing the pitch value from exceeding our limits.
129    let pitch = (pitch + delta_pitch).clamp(
130        camera_settings.pitch_range.start,
131        camera_settings.pitch_range.end,
132    );
133    let roll = roll + delta_roll;
134    let yaw = yaw + delta_yaw;
135    camera.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
136
137    // Adjust the translation to maintain the correct orientation toward the orbit target.
138    // In our example it's a static target, but this could easily be customized.
139    let target = Vec3::ZERO;
140    camera.translation = target - camera.forward() * camera_settings.orbit_distance;
141}
examples/3d/clustered_decals.rs (line 426)
384fn process_move_input(
385    mut selections: Query<(&mut Transform, &Selection)>,
386    mouse_buttons: Res<ButtonInput<MouseButton>>,
387    mouse_motion: Res<AccumulatedMouseMotion>,
388    app_status: Res<AppStatus>,
389) {
390    // Only process drags when movement is selected.
391    if !mouse_buttons.pressed(MouseButton::Left) || app_status.drag_mode != DragMode::Move {
392        return;
393    }
394
395    for (mut transform, selection) in &mut selections {
396        if app_status.selection != *selection {
397            continue;
398        }
399
400        let position = transform.translation;
401
402        // Convert to spherical coordinates.
403        let radius = position.length();
404        let mut theta = acos(position.y / radius);
405        let mut phi = position.z.signum() * acos(position.x * position.xz().length_recip());
406
407        // Camera movement is the inverse of object movement.
408        let (phi_factor, theta_factor) = match *selection {
409            Selection::Camera => (1.0, -1.0),
410            Selection::DecalA | Selection::DecalB => (-1.0, 1.0),
411        };
412
413        // Adjust the spherical coordinates. Clamp the inclination to (0, π).
414        phi += phi_factor * mouse_motion.delta.x * MOVE_SPEED;
415        theta = f32::clamp(
416            theta + theta_factor * mouse_motion.delta.y * MOVE_SPEED,
417            0.001,
418            PI - 0.001,
419        );
420
421        // Convert spherical coordinates back to Cartesian coordinates.
422        transform.translation =
423            radius * vec3(sin(theta) * cos(phi), cos(theta), sin(theta) * sin(phi));
424
425        // Look at the center, but preserve the previous roll angle.
426        let roll = transform.rotation.to_euler(EulerRot::YXZ).2;
427        transform.look_at(Vec3::ZERO, Vec3::Y);
428        let (yaw, pitch, _) = transform.rotation.to_euler(EulerRot::YXZ);
429        transform.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
430    }
431}
432
433/// Processes a drag event that scales the selected target.
434fn process_scale_input(
435    mut selections: Query<(&mut Transform, &Selection)>,
436    mouse_buttons: Res<ButtonInput<MouseButton>>,
437    mouse_motion: Res<AccumulatedMouseMotion>,
438    app_status: Res<AppStatus>,
439) {
440    // Only process drags when the scaling operation is selected.
441    if !mouse_buttons.pressed(MouseButton::Left) || app_status.drag_mode != DragMode::Scale {
442        return;
443    }
444
445    for (mut transform, selection) in &mut selections {
446        if app_status.selection == *selection {
447            transform.scale *= 1.0 + mouse_motion.delta.x * SCALE_SPEED;
448        }
449    }
450}
451
452/// Processes a drag event that rotates the selected target along its local Z
453/// axis.
454fn process_roll_input(
455    mut selections: Query<(&mut Transform, &Selection)>,
456    mouse_buttons: Res<ButtonInput<MouseButton>>,
457    mouse_motion: Res<AccumulatedMouseMotion>,
458    app_status: Res<AppStatus>,
459) {
460    // Only process drags when the rolling operation is selected.
461    if !mouse_buttons.pressed(MouseButton::Left) || app_status.drag_mode != DragMode::Roll {
462        return;
463    }
464
465    for (mut transform, selection) in &mut selections {
466        if app_status.selection != *selection {
467            continue;
468        }
469
470        let (yaw, pitch, mut roll) = transform.rotation.to_euler(EulerRot::YXZ);
471        roll += mouse_motion.delta.x * ROLL_SPEED;
472        transform.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
473    }
474}
examples/camera/first_person_view_model.rs (line 223)
205fn move_player(
206    accumulated_mouse_motion: Res<AccumulatedMouseMotion>,
207    player: Single<(&mut Transform, &CameraSensitivity), With<Player>>,
208) {
209    let (mut transform, camera_sensitivity) = player.into_inner();
210
211    let delta = accumulated_mouse_motion.delta;
212
213    if delta != Vec2::ZERO {
214        // Note that we are not multiplying by delta_time here.
215        // The reason is that for mouse movement, we already get the full movement that happened since the last frame.
216        // This means that if we multiply by delta_time, we will get a smaller rotation than intended by the user.
217        // This situation is reversed when reading e.g. analog input from a gamepad however, where the same rules
218        // as for keyboard input apply. Such an input should be multiplied by delta_time to get the intended rotation
219        // independent of the framerate.
220        let delta_yaw = -delta.x * camera_sensitivity.x;
221        let delta_pitch = -delta.y * camera_sensitivity.y;
222
223        let (yaw, pitch, roll) = transform.rotation.to_euler(EulerRot::YXZ);
224        let yaw = yaw + delta_yaw;
225
226        // If the pitch was ±¹⁄₂ π, the camera would look straight up or down.
227        // When the user wants to move the camera back to the horizon, which way should the camera face?
228        // The camera has no way of knowing what direction was "forward" before landing in that extreme position,
229        // so the direction picked will for all intents and purposes be arbitrary.
230        // Another issue is that for mathematical reasons, the yaw will effectively be flipped when the pitch is at the extremes.
231        // To not run into these issues, we clamp the pitch to a safe range.
232        const PITCH_LIMIT: f32 = FRAC_PI_2 - 0.01;
233        let pitch = (pitch + delta_pitch).clamp(-PITCH_LIMIT, PITCH_LIMIT);
234
235        transform.rotation = Quat::from_euler(EulerRot::YXZ, yaw, pitch, roll);
236    }
237}
Source

pub fn to_array(&self) -> [f32; 4]

[x, y, z, w]

Source

pub fn xyz(self) -> Vec3

Returns the vector part of the quaternion.

Source

pub fn conjugate(self) -> Quat

Returns the quaternion conjugate of self. For a unit quaternion the conjugate is also the inverse.

Source

pub fn inverse(self) -> Quat

Returns the inverse of a normalized quaternion.

Typically quaternion inverse returns the conjugate of a normalized quaternion. Because self is assumed to already be unit length this method does not normalize before returning the conjugate.

§Panics

Will panic if self is not normalized when glam_assert is enabled.

Source

pub fn dot(self, rhs: Quat) -> f32

Computes the dot product of self and rhs. The dot product is equal to the cosine of the angle between two quaternion rotations.

Source

pub fn length(self) -> f32

Computes the length of self.

Source

pub fn length_squared(self) -> f32

Computes the squared length of self.

This is generally faster than length() as it avoids a square root operation.

Source

pub fn length_recip(self) -> f32

Computes 1.0 / length().

For valid results, self must not be of length zero.

Source

pub fn normalize(self) -> Quat

Returns self normalized to length 1.0.

For valid results, self must not be of length zero.

Panics

Will panic if self is zero length when glam_assert is enabled.

Source

pub fn is_finite(self) -> bool

Returns true if, and only if, all elements are finite. If any element is either NaN, positive or negative infinity, this will return false.

Source

pub fn is_nan(self) -> bool

Returns true if any elements are NAN.

Source

pub fn is_normalized(self) -> bool

Returns whether self of length 1.0 or not.

Uses a precision threshold of 1e-6.

Source

pub fn is_near_identity(self) -> bool

Source

pub fn angle_between(self, rhs: Quat) -> f32

Returns the angle (in radians) for the minimal rotation for transforming this quaternion into another.

Both quaternions must be normalized.

§Panics

Will panic if self or rhs are not normalized when glam_assert is enabled.

Examples found in repository?
examples/transforms/align.rs (line 153)
140fn rotate_ship(ship: Single<(&mut Ship, &mut Transform)>, time: Res<Time>) {
141    let (mut ship, mut ship_transform) = ship.into_inner();
142
143    if !ship.in_motion {
144        return;
145    }
146
147    let target_rotation = ship.target_transform.rotation;
148
149    ship_transform
150        .rotation
151        .smooth_nudge(&target_rotation, 3.0, time.delta_secs());
152
153    if ship_transform.rotation.angle_between(target_rotation) <= f32::EPSILON {
154        ship.in_motion = false;
155    }
156}
Source

pub fn rotate_towards(&self, rhs: Quat, max_angle: f32) -> Quat

Rotates towards rhs up to max_angle (in radians).

When max_angle is 0.0, the result will be equal to self. When max_angle is equal to self.angle_between(rhs), the result will be equal to rhs. If max_angle is negative, rotates towards the exact opposite of rhs. Will not go past the target.

Both quaternions must be normalized.

§Panics

Will panic if self or rhs are not normalized when glam_assert is enabled.

Source

pub fn abs_diff_eq(self, rhs: Quat, max_abs_diff: f32) -> bool

Returns true if the absolute difference of all elements between self and rhs is less than or equal to max_abs_diff.

This can be used to compare if two quaternions contain similar elements. It works best when comparing with a known value. The max_abs_diff that should be used used depends on the values being compared against.

For more see comparing floating point numbers.

Source

pub fn lerp(self, end: Quat, s: f32) -> Quat

Performs a linear interpolation between self and rhs based on the value s.

When s is 0.0, the result will be equal to self. When s is 1.0, the result will be equal to rhs.

§Panics

Will panic if self or end are not normalized when glam_assert is enabled.

Examples found in repository?
examples/ecs/iter_combinations.rs (line 157)
150fn look_at_star(
151    mut camera: Single<&mut Transform, (With<Camera>, Without<Star>)>,
152    star: Single<&Transform, With<Star>>,
153) {
154    let new_rotation = camera
155        .looking_at(star.translation, Vec3::Y)
156        .rotation
157        .lerp(camera.rotation, 0.1);
158    camera.rotation = new_rotation;
159}
More examples
Hide additional examples
examples/transforms/transform.rs (line 120)
101fn rotate_cube(
102    mut cubes: Query<(&mut Transform, &mut CubeState), Without<Center>>,
103    center_spheres: Query<&Transform, With<Center>>,
104    timer: Res<Time>,
105) {
106    // Calculate the point to circle around. (The position of the center_sphere)
107    let mut center: Vec3 = Vec3::ZERO;
108    for sphere in &center_spheres {
109        center += sphere.translation;
110    }
111    // Update the rotation of the cube(s).
112    for (mut transform, cube) in &mut cubes {
113        // Calculate the rotation of the cube if it would be looking at the sphere in the center.
114        let look_at_sphere = transform.looking_at(center, *transform.local_y());
115        // Interpolate between the current rotation and the fully turned rotation
116        // when looking at the sphere, with a given turn speed to get a smooth motion.
117        // With higher speed the curvature of the orbit would be smaller.
118        let incremental_turn_weight = cube.turn_speed * timer.delta_secs();
119        let old_rotation = transform.rotation;
120        transform.rotation = old_rotation.lerp(look_at_sphere.rotation, incremental_turn_weight);
121    }
122}
Source

pub fn slerp(self, end: Quat, s: f32) -> Quat

Performs a spherical linear interpolation between self and end based on the value s.

When s is 0.0, the result will be equal to self. When s is 1.0, the result will be equal to end.

§Panics

Will panic if self or end are not normalized when glam_assert is enabled.

Examples found in repository?
examples/gizmos/axes.rs (line 212)
210fn interpolate_transforms(t1: Transform, t2: Transform, t: f32) -> Transform {
211    let translation = t1.translation.lerp(t2.translation, t);
212    let rotation = t1.rotation.slerp(t2.rotation, t);
213    let scale = elerp(t1.scale, t2.scale, t);
214
215    Transform {
216        translation,
217        rotation,
218        scale,
219    }
220}
More examples
Hide additional examples
examples/3d/parallax_mapping.rs (line 197)
187fn move_camera(
188    mut camera: Single<&mut Transform, With<CameraController>>,
189    mut current_view: Local<usize>,
190    button: Res<ButtonInput<MouseButton>>,
191) {
192    if button.just_pressed(MouseButton::Left) {
193        *current_view = (*current_view + 1) % CAMERA_POSITIONS.len();
194    }
195    let target = CAMERA_POSITIONS[*current_view];
196    camera.translation = camera.translation.lerp(target.translation, 0.2);
197    camera.rotation = camera.rotation.slerp(target.rotation, 0.2);
198}
Source

pub fn mul_vec3(self, rhs: Vec3) -> Vec3

Multiplies a quaternion and a 3D vector, returning the rotated vector.

§Panics

Will panic if self is not normalized when glam_assert is enabled.

Examples found in repository?
tests/3d/test_invalid_skinned_mesh.rs (line 229)
223fn update_animated_joints(time: Res<Time>, query: Query<&mut Transform, With<AnimatedJoint>>) {
224    for mut transform in query {
225        let angle = TAU * 4.0 * ops::cos((time.elapsed_secs() / 8.0) * TAU);
226        let rotation = Quat::from_rotation_z(angle);
227
228        transform.rotation = rotation;
229        transform.translation = rotation.mul_vec3(Vec3::new(0.0, 1.3, 0.0));
230    }
231}
More examples
Hide additional examples
examples/3d/anisotropy.rs (line 205)
192fn rotate_camera(
193    mut camera: Query<&mut Transform, With<Camera>>,
194    app_status: Res<AppStatus>,
195    time: Res<Time>,
196    mut stopwatch: Local<Stopwatch>,
197) {
198    if app_status.light_mode == LightMode::EnvironmentMap {
199        stopwatch.tick(time.delta());
200    }
201
202    let now = stopwatch.elapsed_secs();
203    for mut transform in camera.iter_mut() {
204        *transform = Transform::from_translation(
205            Quat::from_rotation_y(now).mul_vec3(CAMERA_INITIAL_POSITION),
206        )
207        .looking_at(Vec3::ZERO, Vec3::Y);
208    }
209}
Source

pub fn mul_quat(self, rhs: Quat) -> Quat

Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.

Note that due to floating point rounding the result may not be perfectly normalized.

§Panics

Will panic if self or rhs are not normalized when glam_assert is enabled.

Source

pub fn from_affine3(a: &Affine3A) -> Quat

Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.

Note if the input affine matrix contain scales, shears, or other non-rotation transformations then the resulting quaternion will be ill-defined.

§Panics

Will panic if any input affine matrix column is not normalized when glam_assert is enabled.

Source

pub fn mul_vec3a(self, rhs: Vec3A) -> Vec3A

Multiplies a quaternion and a 3D vector, returning the rotated vector.

Source

pub fn as_dquat(self) -> DQuat

Trait Implementations§

Source§

impl Add<&Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the + operator.
Source§

fn add(self, rhs: &Quat) -> Quat

Performs the + operation. Read more
Source§

impl Add<&Quat> for Quat

Source§

type Output = Quat

The resulting type after applying the + operator.
Source§

fn add(self, rhs: &Quat) -> Quat

Performs the + operation. Read more
Source§

impl Add<Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the + operator.
Source§

fn add(self, rhs: Quat) -> Quat

Performs the + operation. Read more
Source§

impl Add for Quat

Source§

fn add(self, rhs: Quat) -> Quat

Adds two quaternions.

The sum is not guaranteed to be normalized.

Note that addition is not the same as combining the rotations represented by the two quaternions! That corresponds to multiplication.

Source§

type Output = Quat

The resulting type after applying the + operator.
Source§

impl AddAssign<&Quat> for Quat

Source§

fn add_assign(&mut self, rhs: &Quat)

Performs the += operation. Read more
Source§

impl AddAssign for Quat

Source§

fn add_assign(&mut self, rhs: Quat)

Performs the += operation. Read more
Source§

impl Animatable for Quat

Source§

fn interpolate(a: &Quat, b: &Quat, t: f32) -> Quat

Performs a slerp to smoothly interpolate between quaternions.

Source§

fn blend(inputs: impl Iterator<Item = BlendInput<Quat>>) -> Quat

Blends one or more values together. Read more
Source§

impl AsRef<[f32; 4]> for Quat

Source§

fn as_ref(&self) -> &[f32; 4]

Converts this type into a shared reference of the (usually inferred) input type.
Source§

impl Clone for Quat

Source§

fn clone(&self) -> Quat

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Curve<Quat> for CubicRotationCurve

Source§

fn domain(&self) -> Interval

The interval over which this curve is parametrized. Read more
Source§

fn sample_clamped(&self, t: f32) -> Quat

Sample a point on this curve at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

fn sample_unchecked(&self, t: f32) -> Quat

Sample a point on this curve at the parameter value t, extracting the associated value. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample(&self, t: f32) -> Option<T>

Sample a point on this curve at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

impl Debug for Quat

Source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for Quat

Source§

fn default() -> Quat

Returns the “default value” for a type. Read more
Source§

impl Deref for Quat

Source§

type Target = Vec4<f32>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<Quat as Deref>::Target

Dereferences the value.
Source§

impl DerefMut for Quat

Source§

fn deref_mut(&mut self) -> &mut <Quat as Deref>::Target

Mutably dereferences the value.
Source§

impl<'de> Deserialize<'de> for Quat

Deserialize expects a sequence of 4 values.

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Quat, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Display for Quat

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Div<&f32> for &Quat

Source§

type Output = Quat

The resulting type after applying the / operator.
Source§

fn div(self, rhs: &f32) -> Quat

Performs the / operation. Read more
Source§

impl Div<&f32> for Quat

Source§

type Output = Quat

The resulting type after applying the / operator.
Source§

fn div(self, rhs: &f32) -> Quat

Performs the / operation. Read more
Source§

impl Div<f32> for &Quat

Source§

type Output = Quat

The resulting type after applying the / operator.
Source§

fn div(self, rhs: f32) -> Quat

Performs the / operation. Read more
Source§

impl Div<f32> for Quat

Source§

fn div(self, rhs: f32) -> Quat

Divides a quaternion by a scalar value. The quotient is not guaranteed to be normalized.

Source§

type Output = Quat

The resulting type after applying the / operator.
Source§

impl DivAssign<&f32> for Quat

Source§

fn div_assign(&mut self, rhs: &f32)

Performs the /= operation. Read more
Source§

impl DivAssign<f32> for Quat

Source§

fn div_assign(&mut self, rhs: f32)

Performs the /= operation. Read more
Source§

impl Ease for Quat

Source§

fn interpolating_curve_unbounded(start: Quat, end: Quat) -> impl Curve<Quat>

Given start and end values, produce a curve with unlimited domain that: Read more
Source§

impl From<Quat> for Isometry3d

Source§

fn from(rotation: Quat) -> Isometry3d

Converts to this type from the input type.
Source§

impl From<Quat> for Vec4

Source§

fn from(q: Quat) -> Vec4

Converts to this type from the input type.
Source§

impl FromArg for Quat

Source§

type This<'from_arg> = Quat

The type to convert into. Read more
Source§

fn from_arg(arg: Arg<'_>) -> Result<<Quat as FromArg>::This<'_>, ArgError>

Creates an item from an argument. Read more
Source§

impl FromReflect for Quat

Source§

fn from_reflect(reflect: &(dyn PartialReflect + 'static)) -> Option<Quat>

Constructs a concrete instance of Self from a reflected value.
Source§

fn take_from_reflect( reflect: Box<dyn PartialReflect>, ) -> Result<Self, Box<dyn PartialReflect>>

Attempts to downcast the given value to Self using, constructing the value using from_reflect if that fails. Read more
Source§

impl FromRng for Quat

Source§

fn from_rng<R>(rng: &mut R) -> Self
where R: Rng + ?Sized,

Construct a value of this type uniformly at random using rng as the source of randomness.
Source§

impl GetOwnership for Quat

Source§

fn ownership() -> Ownership

Returns the ownership of Self.
Source§

impl GetTypeRegistration for Quat

Source§

fn get_type_registration() -> TypeRegistration

Returns the default TypeRegistration for this type.
Source§

fn register_type_dependencies(registry: &mut TypeRegistry)

Registers other types needed by this type. Read more
Source§

impl IntoReturn for Quat

Source§

fn into_return<'into_return>(self) -> Return<'into_return>
where Quat: 'into_return,

Converts Self into a Return value.
Source§

impl Mul<&Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Quat) -> Quat

Performs the * operation. Read more
Source§

impl Mul<&Quat> for Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Quat) -> Quat

Performs the * operation. Read more
Source§

impl Mul<&Vec3> for &Quat

Source§

type Output = Vec3

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Vec3) -> Vec3

Performs the * operation. Read more
Source§

impl Mul<&Vec3> for Quat

Source§

type Output = Vec3

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Vec3) -> Vec3

Performs the * operation. Read more
Source§

impl Mul<&Vec3A> for &Quat

Source§

type Output = Vec3A

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Vec3A) -> Vec3A

Performs the * operation. Read more
Source§

impl Mul<&Vec3A> for Quat

Source§

type Output = Vec3A

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &Vec3A) -> Vec3A

Performs the * operation. Read more
Source§

impl Mul<&f32> for &Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &f32) -> Quat

Performs the * operation. Read more
Source§

impl Mul<&f32> for Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: &f32) -> Quat

Performs the * operation. Read more
Source§

impl Mul<Dir3> for Quat

Source§

fn mul(self, direction: Dir3) -> <Quat as Mul<Dir3>>::Output

Rotates the Dir3 using a Quat.

Source§

type Output = Dir3

The resulting type after applying the * operator.
Source§

impl Mul<Dir3A> for Quat

Source§

fn mul(self, direction: Dir3A) -> <Quat as Mul<Dir3A>>::Output

Rotates the Dir3A using a Quat.

Source§

type Output = Dir3A

The resulting type after applying the * operator.
Source§

impl Mul<Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Quat) -> Quat

Performs the * operation. Read more
Source§

impl Mul<Vec3> for &Quat

Source§

type Output = Vec3

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Vec3) -> Vec3

Performs the * operation. Read more
Source§

impl Mul<Vec3> for Quat

Source§

fn mul(self, rhs: Vec3) -> <Quat as Mul<Vec3>>::Output

Multiplies a quaternion and a 3D vector, returning the rotated vector.

§Panics

Will panic if self is not normalized when glam_assert is enabled.

Source§

type Output = Vec3

The resulting type after applying the * operator.
Source§

impl Mul<Vec3A> for &Quat

Source§

type Output = Vec3A

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Vec3A) -> Vec3A

Performs the * operation. Read more
Source§

impl Mul<Vec3A> for Quat

Source§

type Output = Vec3A

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Vec3A) -> <Quat as Mul<Vec3A>>::Output

Performs the * operation. Read more
Source§

impl Mul<f32> for &Quat

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f32) -> Quat

Performs the * operation. Read more
Source§

impl Mul<f32> for Quat

Source§

fn mul(self, rhs: f32) -> Quat

Multiplies a quaternion by a scalar value.

The product is not guaranteed to be normalized.

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

impl Mul for Quat

Source§

fn mul(self, rhs: Quat) -> Quat

Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.

Note that due to floating point rounding the result may not be perfectly normalized.

§Panics

Will panic if self or rhs are not normalized when glam_assert is enabled.

Source§

type Output = Quat

The resulting type after applying the * operator.
Source§

impl MulAssign<&Quat> for Quat

Source§

fn mul_assign(&mut self, rhs: &Quat)

Performs the *= operation. Read more
Source§

impl MulAssign<&f32> for Quat

Source§

fn mul_assign(&mut self, rhs: &f32)

Performs the *= operation. Read more
Source§

impl MulAssign<f32> for Quat

Source§

fn mul_assign(&mut self, rhs: f32)

Performs the *= operation. Read more
Source§

impl MulAssign for Quat

Source§

fn mul_assign(&mut self, rhs: Quat)

Performs the *= operation. Read more
Source§

impl Neg for &Quat

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

fn neg(self) -> Quat

Performs the unary - operation. Read more
Source§

impl Neg for Quat

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

fn neg(self) -> Quat

Performs the unary - operation. Read more
Source§

impl PartialEq for Quat

Source§

fn eq(&self, rhs: &Quat) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialReflect for Quat

Source§

fn get_represented_type_info(&self) -> Option<&'static TypeInfo>

Returns the TypeInfo of the type represented by this value. Read more
Source§

fn try_apply( &mut self, value: &(dyn PartialReflect + 'static), ) -> Result<(), ApplyError>

Tries to apply a reflected value to this value. Read more
Source§

fn reflect_kind(&self) -> ReflectKind

Returns a zero-sized enumeration of “kinds” of type. Read more
Source§

fn reflect_ref(&self) -> ReflectRef<'_>

Returns an immutable enumeration of “kinds” of type. Read more
Source§

fn reflect_mut(&mut self) -> ReflectMut<'_>

Returns a mutable enumeration of “kinds” of type. Read more
Source§

fn reflect_owned(self: Box<Quat>) -> ReflectOwned

Returns an owned enumeration of “kinds” of type. Read more
Source§

fn try_into_reflect( self: Box<Quat>, ) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>

Attempts to cast this type to a boxed, fully-reflected value.
Source§

fn try_as_reflect(&self) -> Option<&(dyn Reflect + 'static)>

Attempts to cast this type to a fully-reflected value.
Source§

fn try_as_reflect_mut(&mut self) -> Option<&mut (dyn Reflect + 'static)>

Attempts to cast this type to a mutable, fully-reflected value.
Source§

fn into_partial_reflect(self: Box<Quat>) -> Box<dyn PartialReflect>

Casts this type to a boxed, reflected value. Read more
Source§

fn as_partial_reflect(&self) -> &(dyn PartialReflect + 'static)

Casts this type to a reflected value. Read more
Source§

fn as_partial_reflect_mut(&mut self) -> &mut (dyn PartialReflect + 'static)

Casts this type to a mutable, reflected value. Read more
Source§

fn reflect_partial_eq( &self, value: &(dyn PartialReflect + 'static), ) -> Option<bool>

Returns a “partial equality” comparison result. Read more
Source§

fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Debug formatter for the value. Read more
Source§

fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>

Attempts to clone Self using reflection. Read more
Source§

fn apply(&mut self, value: &(dyn PartialReflect + 'static))

Applies a reflected value to this value. Read more
Source§

fn to_dynamic(&self) -> Box<dyn PartialReflect>

Converts this reflected value into its dynamic representation based on its kind. Read more
Source§

fn reflect_clone_and_take<T>(&self) -> Result<T, ReflectCloneError>
where T: 'static, Self: Sized + TypePath,

For a type implementing PartialReflect, combines reflect_clone and take in a useful fashion, automatically constructing an appropriate ReflectCloneError if the downcast fails. Read more
Source§

fn reflect_hash(&self) -> Option<u64>

Returns a hash of the value (which includes the type). Read more
Source§

fn is_dynamic(&self) -> bool

Indicates whether or not this type is a dynamic type. Read more
Source§

impl<'a> Product<&'a Quat> for Quat

Source§

fn product<I>(iter: I) -> Quat
where I: Iterator<Item = &'a Quat>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl Product for Quat

Source§

fn product<I>(iter: I) -> Quat
where I: Iterator<Item = Quat>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl Reflect for Quat

Source§

fn into_any(self: Box<Quat>) -> Box<dyn Any>

Returns the value as a Box<dyn Any>. Read more
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the value as a &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Returns the value as a &mut dyn Any. Read more
Source§

fn into_reflect(self: Box<Quat>) -> Box<dyn Reflect>

Casts this type to a boxed, fully-reflected value.
Source§

fn as_reflect(&self) -> &(dyn Reflect + 'static)

Casts this type to a fully-reflected value.
Source§

fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)

Casts this type to a mutable, fully-reflected value.
Source§

fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>

Performs a type-checked assignment of a reflected value to this value. Read more
Source§

impl Serialize for Quat

Serialize as a sequence of 4 values.

Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl StableInterpolate for Quat

Source§

fn interpolate_stable(&self, other: &Quat, t: f32) -> Quat

Interpolate between this value and the other given value using the parameter t. At t = 0.0, a value equivalent to self is recovered, while t = 1.0 recovers a value equivalent to other, with intermediate values interpolating between the two. See the trait-level documentation for details.
Source§

fn interpolate_stable_assign(&mut self, other: &Self, t: f32)

A version of interpolate_stable that assigns the result to self for convenience.
Source§

fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32)

Smoothly nudge this value towards the target at a given decay rate. The decay_rate parameter controls how fast the distance between self and target decays relative to the units of delta; the intended usage is for decay_rate to generally remain fixed, while delta is something like delta_time from an updating system. This produces a smooth following of the target that is independent of framerate. Read more
Source§

impl Struct for Quat

Source§

fn field(&self, name: &str) -> Option<&(dyn PartialReflect + 'static)>

Returns a reference to the value of the field named name as a &dyn PartialReflect.
Source§

fn field_mut( &mut self, name: &str, ) -> Option<&mut (dyn PartialReflect + 'static)>

Returns a mutable reference to the value of the field named name as a &mut dyn PartialReflect.
Source§

fn field_at(&self, index: usize) -> Option<&(dyn PartialReflect + 'static)>

Returns a reference to the value of the field with index index as a &dyn PartialReflect.
Source§

fn field_at_mut( &mut self, index: usize, ) -> Option<&mut (dyn PartialReflect + 'static)>

Returns a mutable reference to the value of the field with index index as a &mut dyn PartialReflect.
Source§

fn name_at(&self, index: usize) -> Option<&str>

Returns the name of the field with index index.
Source§

fn field_len(&self) -> usize

Returns the number of fields in the struct.
Source§

fn iter_fields(&self) -> FieldIter<'_>

Returns an iterator over the values of the reflectable fields for this struct.
Source§

fn to_dynamic_struct(&self) -> DynamicStruct

Creates a new DynamicStruct from this struct.
Source§

fn get_represented_struct_info(&self) -> Option<&'static StructInfo>

Will return None if TypeInfo is not available.
Source§

impl Sub<&Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: &Quat) -> Quat

Performs the - operation. Read more
Source§

impl Sub<&Quat> for Quat

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: &Quat) -> Quat

Performs the - operation. Read more
Source§

impl Sub<Quat> for &Quat

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: Quat) -> Quat

Performs the - operation. Read more
Source§

impl Sub for Quat

Source§

fn sub(self, rhs: Quat) -> Quat

Subtracts the rhs quaternion from self.

The difference is not guaranteed to be normalized.

Source§

type Output = Quat

The resulting type after applying the - operator.
Source§

impl SubAssign<&Quat> for Quat

Source§

fn sub_assign(&mut self, rhs: &Quat)

Performs the -= operation. Read more
Source§

impl SubAssign for Quat

Source§

fn sub_assign(&mut self, rhs: Quat)

Performs the -= operation. Read more
Source§

impl<'a> Sum<&'a Quat> for Quat

Source§

fn sum<I>(iter: I) -> Quat
where I: Iterator<Item = &'a Quat>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl Sum for Quat

Source§

fn sum<I>(iter: I) -> Quat
where I: Iterator<Item = Quat>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl TypePath for Quat

Source§

fn type_path() -> &'static str

Returns the fully qualified path of the underlying type. Read more
Source§

fn short_type_path() -> &'static str

Returns a short, pretty-print enabled path to the type. Read more
Source§

fn type_ident() -> Option<&'static str>

Returns the name of the type, or None if it is anonymous. Read more
Source§

fn crate_name() -> Option<&'static str>

Returns the name of the crate the type is in, or None if it is anonymous. Read more
Source§

fn module_path() -> Option<&'static str>

Returns the path to the module the type is in, or None if it is anonymous. Read more
Source§

impl Typed for Quat

Source§

fn type_info() -> &'static TypeInfo

Returns the compile-time info for the underlying type.
Source§

impl Zeroable for Quat

Source§

fn zeroed() -> Self

Source§

impl Copy for Quat

Source§

impl Pod for Quat

Auto Trait Implementations§

§

impl Freeze for Quat

§

impl RefUnwindSafe for Quat

§

impl Send for Quat

§

impl Sync for Quat

§

impl Unpin for Quat

§

impl UnwindSafe for Quat

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CheckedBitPattern for T
where T: AnyBitPattern,

Source§

type Bits = T

Self must have the same layout as the specified Bits except for the possible invalid bit patterns being checked during is_valid_bit_pattern.
Source§

fn is_valid_bit_pattern(_bits: &T) -> bool

If this function returns true, then it must be valid to reinterpret bits as &Self.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DynamicTypePath for T
where T: TypePath,

Source§

impl<T> DynamicTyped for T
where T: Typed,

Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> FromWorld for T
where T: Default,

Source§

fn from_world(_world: &mut World) -> T

Creates Self using default().

Source§

impl<S> GetField for S
where S: Struct,

Source§

fn get_field<T>(&self, name: &str) -> Option<&T>
where T: Reflect,

Returns a reference to the value of the field named name, downcast to T.
Source§

fn get_field_mut<T>(&mut self, name: &str) -> Option<&mut T>
where T: Reflect,

Returns a mutable reference to the value of the field named name, downcast to T.
Source§

impl<T> GetPath for T
where T: Reflect + ?Sized,

Source§

fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a reference to the value specified by path. Read more
Source§

fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a mutable reference to the value specified by path. Read more
Source§

fn path<'p, T>( &self, path: impl ReflectPath<'p>, ) -> Result<&T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed reference to the value specified by path. Read more
Source§

fn path_mut<'p, T>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed mutable reference to the value specified by path. Read more
Source§

impl<T, W> HasTypeWitness<W> for T
where W: MakeTypeWitness<Arg = T>, T: ?Sized,

Source§

const WITNESS: W = W::MAKE

A constant of the type witness
Source§

impl<T> Identity for T
where T: ?Sized,

Source§

const TYPE_EQ: TypeEq<T, <T as Identity>::Type> = TypeEq::NEW

Proof that Self is the same type as Self::Type, provides methods for casting between Self and Self::Type.
Source§

type Type = T

The same type as Self, used to emulate type equality bounds (T == U) with associated type equality constraints (T: Identity<Type = U>).
Source§

impl<T> InitializeFromFunction<T> for T

Source§

fn initialize_from_function(f: fn() -> T) -> T

Create an instance of this type from an initialization function
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> IntoResult<T> for T

Source§

fn into_result(self) -> Result<T, RunSystemError>

Converts this type into the system output type.
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<A> Is for A
where A: Any,

Source§

fn is<T>() -> bool
where T: Any,

Checks if the current type “is” another type, using a TypeId equality comparison. This is most useful in the context of generic logic. Read more
Source§

impl<T> NoneValue for T
where T: Default,

Source§

type NoneType = T

Source§

fn null_value() -> T

The none-equivalent value.
Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

Source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
Source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
Source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> Serialize for T
where T: Serialize + ?Sized,

Source§

fn erased_serialize(&self, serializer: &mut dyn Serializer) -> Result<(), Error>

Source§

fn do_erased_serialize( &self, serializer: &mut dyn Serializer, ) -> Result<(), ErrorImpl>

Source§

impl<Ret> SpawnIfAsync<(), Ret> for Ret

Source§

fn spawn(self) -> Ret

Spawn the value into the dioxus runtime if it is an async block
Source§

impl<T, O> SuperFrom<T> for O
where O: From<T>,

Source§

fn super_from(input: T) -> O

Convert from a type to another type.
Source§

impl<T, O, M> SuperInto<O, M> for T
where O: SuperFrom<T, M>,

Source§

fn super_into(self) -> O

Convert from a type to another type.
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> ToSmolStr for T
where T: Display + ?Sized,

Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

Source§

fn clone_type_data(&self) -> Box<dyn TypeData>

Creates a type-erased clone of this value.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> AnyBitPattern for T
where T: Pod,

Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> NoUninit for T
where T: Pod,

Source§

impl<T> Reflectable for T

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,