Struct Single

Source
pub struct Single<'w, D, F = ()>
where D: QueryData, F: QueryFilter,
{ /* private fields */ }
Expand description

System parameter that provides access to single entity’s components, much like Query::single/Query::single_mut.

This SystemParam fails validation if zero or more than one matching entity exists. This will cause the system to be skipped, according to the rules laid out in SystemParamValidationError.

Use Option<Single<D, F>> instead if zero or one matching entities can exist.

See Query for more details.

Implementations§

Source§

impl<'w, D, F> Single<'w, D, F>
where D: QueryData, F: QueryFilter,

Source

pub fn into_inner(self) -> <D as QueryData>::Item<'w>

Returns the inner item with ownership.

Examples found in repository?
examples/animation/animation_events.rs (line 32)
28fn edit_message(
29    trigger: Trigger<MessageEvent>,
30    text: Single<(&mut Text2d, &mut TextColor), With<MessageText>>,
31) {
32    let (mut text, mut color) = text.into_inner();
33    text.0 = trigger.event().value.clone();
34    color.0 = trigger.event().color;
35}
More examples
Hide additional examples
examples/transforms/align.rs (line 141)
140fn rotate_ship(ship: Single<(&mut Ship, &mut Transform)>, time: Res<Time>) {
141    let (mut ship, mut ship_transform) = ship.into_inner();
142
143    if !ship.in_motion {
144        return;
145    }
146
147    let target_rotation = ship.target_transform.rotation;
148
149    ship_transform
150        .rotation
151        .smooth_nudge(&target_rotation, 3.0, time.delta_secs());
152
153    if ship_transform.rotation.angle_between(target_rotation) <= f32::EPSILON {
154        ship.in_motion = false;
155    }
156}
examples/ui/relative_cursor_position.rs (line 70)
66fn relative_cursor_position_system(
67    relative_cursor_position: Single<&RelativeCursorPosition>,
68    output_query: Single<(&mut Text, &mut TextColor)>,
69) {
70    let (mut output, mut text_color) = output_query.into_inner();
71
72    **output = if let Some(relative_cursor_position) = relative_cursor_position.normalized {
73        format!(
74            "({:.1}, {:.1})",
75            relative_cursor_position.x, relative_cursor_position.y
76        )
77    } else {
78        "unknown".to_string()
79    };
80
81    text_color.0 = if relative_cursor_position.mouse_over() {
82        Color::srgb(0.1, 0.9, 0.1)
83    } else {
84        Color::srgb(0.9, 0.1, 0.1)
85    };
86}
examples/math/custom_primitives.rs (line 273)
262fn switch_cameras(
263    current: Res<State<CameraActive>>,
264    mut next: ResMut<NextState<CameraActive>>,
265    camera: Single<(&mut Transform, &mut Projection)>,
266) {
267    let next_state = match current.get() {
268        CameraActive::Dim2 => CameraActive::Dim3,
269        CameraActive::Dim3 => CameraActive::Dim2,
270    };
271    next.set(next_state);
272
273    let (mut transform, mut projection) = camera.into_inner();
274    match next_state {
275        CameraActive::Dim2 => {
276            *transform = TRANSFORM_2D;
277            *projection = PROJECTION_2D;
278        }
279        CameraActive::Dim3 => {
280            *transform = TRANSFORM_3D;
281            *projection = PROJECTION_3D;
282        }
283    };
284}
examples/asset/alter_sprite.rs (line 113)
107fn alter_handle(
108    asset_server: Res<AssetServer>,
109    right_bird: Single<(&mut Bird, &mut Sprite), Without<Left>>,
110) {
111    // Image handles, like other parts of the ECS, can be queried as mutable and modified at
112    // runtime. We only spawned one bird without the `Left` marker component.
113    let (mut bird, mut sprite) = right_bird.into_inner();
114
115    // Switch to a new Bird variant
116    bird.set_next_variant();
117
118    // Modify the handle associated with the Bird on the right side. Note that we will only
119    // have to load the same path from storage media once: repeated attempts will re-use the
120    // asset.
121    sprite.image = asset_server.load(bird.get_texture_path());
122}
examples/math/render_primitives.rs (line 340)
334fn update_active_cameras(
335    state: Res<State<CameraActive>>,
336    camera_2d: Single<(Entity, &mut Camera), With<Camera2d>>,
337    camera_3d: Single<(Entity, &mut Camera), (With<Camera3d>, Without<Camera2d>)>,
338    mut text: Query<&mut UiTargetCamera, With<HeaderNode>>,
339) {
340    let (entity_2d, mut cam_2d) = camera_2d.into_inner();
341    let (entity_3d, mut cam_3d) = camera_3d.into_inner();
342    let is_camera_2d_active = matches!(*state.get(), CameraActive::Dim2);
343
344    cam_2d.is_active = is_camera_2d_active;
345    cam_3d.is_active = !is_camera_2d_active;
346
347    let active_camera = if is_camera_2d_active {
348        entity_2d
349    } else {
350        entity_3d
351    };
352
353    text.iter_mut().for_each(|mut target_camera| {
354        *target_camera = UiTargetCamera(active_camera);
355    });
356}

Trait Implementations§

Source§

impl<'w, D, F> Deref for Single<'w, D, F>
where D: QueryData, F: QueryFilter,

Source§

type Target = <D as QueryData>::Item<'w>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<Single<'w, D, F> as Deref>::Target

Dereferences the value.
Source§

impl<'w, D, F> DerefMut for Single<'w, D, F>
where D: QueryData, F: QueryFilter,

Source§

fn deref_mut(&mut self) -> &mut <Single<'w, D, F> as Deref>::Target

Mutably dereferences the value.
Source§

impl<'a, D, F> SystemParam for Single<'a, D, F>
where D: QueryData + 'static, F: QueryFilter + 'static,

Source§

type State = QueryState<D, F>

Used to store data which persists across invocations of a system.
Source§

type Item<'w, 's> = Single<'w, D, F>

The item type returned when constructing this system param. The value of this associated type should be Self, instantiated with new lifetimes. Read more
Source§

fn init_state( world: &mut World, system_meta: &mut SystemMeta, ) -> <Single<'a, D, F> as SystemParam>::State

Registers any World access used by this SystemParam and creates a new instance of this param’s State.
Source§

unsafe fn new_archetype( state: &mut <Single<'a, D, F> as SystemParam>::State, archetype: &Archetype, system_meta: &mut SystemMeta, )

For the specified Archetype, registers the components accessed by this SystemParam (if applicable).a Read more
Source§

unsafe fn get_param<'w, 's>( state: &'s mut <Single<'a, D, F> as SystemParam>::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, change_tick: Tick, ) -> <Single<'a, D, F> as SystemParam>::Item<'w, 's>

Creates a parameter to be passed into a SystemParamFunction. Read more
Source§

unsafe fn validate_param( state: &<Single<'a, D, F> as SystemParam>::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'_>, ) -> Result<(), SystemParamValidationError>

Validates that the param can be acquired by the get_param. Read more
Source§

fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)

Applies any deferred mutations stored in this SystemParam’s state. This is used to apply Commands during ApplyDeferred.
Source§

fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )

Queues any deferred mutations to be applied at the next ApplyDeferred.
Source§

impl<'a, D, F> ReadOnlySystemParam for Single<'a, D, F>
where D: ReadOnlyQueryData + 'static, F: QueryFilter + 'static,

Auto Trait Implementations§

§

impl<'w, D, F> Freeze for Single<'w, D, F>
where <D as QueryData>::Item<'w>: Freeze,

§

impl<'w, D, F> RefUnwindSafe for Single<'w, D, F>
where <D as QueryData>::Item<'w>: RefUnwindSafe, F: RefUnwindSafe,

§

impl<'w, D, F> Send for Single<'w, D, F>
where <D as QueryData>::Item<'w>: Send, F: Send,

§

impl<'w, D, F> Sync for Single<'w, D, F>
where <D as QueryData>::Item<'w>: Sync, F: Sync,

§

impl<'w, D, F> Unpin for Single<'w, D, F>
where <D as QueryData>::Item<'w>: Unpin, F: Unpin,

§

impl<'w, D, F> UnwindSafe for Single<'w, D, F>
where <D as QueryData>::Item<'w>: UnwindSafe, F: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T, C, D> Curve<T> for D
where C: Curve<T> + ?Sized, D: Deref<Target = C>,

Source§

fn domain(&self) -> Interval

The interval over which this curve is parametrized. Read more
Source§

fn sample_unchecked(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, extracting the associated value. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample(&self, t: f32) -> Option<T>

Sample a point on this curve at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

fn sample_clamped(&self, t: f32) -> T

Sample a point on this curve at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

impl<C, T> CurveExt<T> for C
where C: Curve<T>,

Source§

fn sample_iter( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = Option<T>>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, returning None if the point is outside of the curve’s domain. Read more
Source§

fn sample_iter_unchecked( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, extracting the associated values. This is the unchecked version of sampling, which should only be used if the sample times t_n are already known to lie within the curve’s domain. Read more
Source§

fn sample_iter_clamped( &self, iter: impl IntoIterator<Item = f32>, ) -> impl Iterator<Item = T>

Sample a collection of n >= 0 points on this curve at the parameter values t_n, clamping t_n to lie inside the domain of the curve. Read more
Source§

fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
where F: Fn(T) -> S,

Create a new curve by mapping the values of this curve via a function f; i.e., if the sample at time t for this curve is x, the value at time t on the new curve will be f(x).
Source§

fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
where F: Fn(f32) -> f32,

Create a new Curve whose parameter space is related to the parameter space of this curve by f. For each time t, the sample from the new curve at time t is the sample from this curve at time f(t). The given domain will be the domain of the new curve. The function f is expected to take domain into self.domain(). Read more
Source§

fn reparametrize_linear( self, domain: Interval, ) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>

Linearly reparametrize this Curve, producing a new curve whose domain is the given domain instead of the current one. This operation is only valid for curves with bounded domains. Read more
Source§

fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
where C: Curve<f32>,

Reparametrize this Curve by sampling from another curve. Read more
Source§

fn graph(self) -> GraphCurve<T, Self>

Create a new Curve which is the graph of this one; that is, its output echoes the sample time as part of a tuple. Read more
Source§

fn zip<S, C>( self, other: C, ) -> Result<ZipCurve<T, S, Self, C>, InvalidIntervalError>
where C: Curve<S>,

Create a new Curve by zipping this curve together with another. Read more
Source§

fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
where C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn reverse(self) -> Result<ReverseCurve<T, Self>, ReverseError>

Create a new Curve inverting this curve on the x-axis, producing another curve with outputs of the same type, effectively playing backwards starting at self.domain().end() and transitioning over to self.domain().start(). The domain of the new curve is still the same. Read more
Source§

fn repeat(self, count: usize) -> Result<RepeatCurve<T, Self>, RepeatError>

Create a new Curve repeating this curve N times, producing another curve with outputs of the same type. The domain of the new curve will be bigger by a factor of n + 1. Read more
Source§

fn forever(self) -> Result<ForeverCurve<T, Self>, RepeatError>

Create a new Curve repeating this curve forever, producing another curve with outputs of the same type. The domain of the new curve will be unbounded. Read more
Source§

fn ping_pong(self) -> Result<PingPongCurve<T, Self>, PingPongError>

Create a new Curve chaining the original curve with its inverse, producing another curve with outputs of the same type. The domain of the new curve will be twice as long. The transition point is guaranteed to not make any jumps. Read more
Source§

fn chain_continue<C>( self, other: C, ) -> Result<ContinuationCurve<T, Self, C>, ChainError>
where T: VectorSpace, C: Curve<T>,

Create a new Curve by composing this curve end-to-start with another, producing another curve with outputs of the same type. The domain of the other curve is translated so that its start coincides with where this curve ends. Read more
Source§

fn samples( &self, samples: usize, ) -> Result<impl Iterator<Item = T>, ResamplingError>

Extract an iterator over evenly-spaced samples from this curve. Read more
Source§

fn by_ref(&self) -> &Self

Borrow this curve rather than taking ownership of it. This is essentially an alias for a prefix &; the point is that intermediate operations can be performed while retaining access to the original curve. Read more
Source§

fn flip<U, V>(self) -> impl Curve<(V, U)>
where Self: CurveExt<(U, V)>,

Flip this curve so that its tuple output is arranged the other way.
Source§

impl<C, T> CurveResampleExt<T> for C
where C: Curve<T> + ?Sized,

Source§

fn resample<I>( &self, segments: usize, interpolation: I, ) -> Result<SampleCurve<T, I>, ResamplingError>
where I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using the provided interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. Read more
Source§

fn resample_auto( &self, segments: usize, ) -> Result<SampleAutoCurve<T>, ResamplingError>

Resample this Curve to produce a new one that is defined by interpolation over equally spaced sample values, using automatic interpolation to interpolate between adjacent samples. The curve is interpolated on segments segments between samples. For example, if segments is 1, only the start and end points of the curve are used as samples; if segments is 2, a sample at the midpoint is taken as well, and so on. Read more
Source§

fn resample_uneven<I>( &self, sample_times: impl IntoIterator<Item = f32>, interpolation: I, ) -> Result<UnevenSampleCurve<T, I>, ResamplingError>
where I: Fn(&T, &T, f32) -> T,

Resample this Curve to produce a new one that is defined by interpolation over samples taken at a given set of times. The given interpolation is used to interpolate adjacent samples, and the sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

fn resample_uneven_auto( &self, sample_times: impl IntoIterator<Item = f32>, ) -> Result<UnevenSampleAutoCurve<T>, ResamplingError>

Resample this Curve to produce a new one that is defined by automatic interpolation over samples taken at the given set of times. The given sample_times are expected to contain at least two valid times within the curve’s domain interval. Read more
Source§

impl<T, C> CurveWithDerivative<T> for C
where T: HasTangent, C: SampleDerivative<T>,

Source§

fn with_derivative(self) -> SampleDerivativeWrapper<C>

This curve, but with its first derivative included in sampling. Read more
Source§

impl<T> Downcast<T> for T

Source§

fn downcast(&self) -> &T

Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T, C, D> SampleDerivative<T> for D
where T: HasTangent, C: SampleDerivative<T> + ?Sized, D: Deref<Target = C>,

Source§

fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>

Sample this curve at the parameter value t, extracting the associated value in addition to its derivative. This is the unchecked version of sampling, which should only be used if the sample time t is already known to lie within the curve’s domain. Read more
Source§

fn sample_with_derivative(&self, t: f32) -> Option<WithDerivative<T>>

Sample this curve’s value and derivative at the parameter value t, returning None if the point is outside of the curve’s domain.
Source§

fn sample_with_derivative_clamped(&self, t: f32) -> WithDerivative<T>

Sample this curve’s value and derivative at the parameter value t, clamping t to lie inside the domain of the curve.
Source§

impl<T> Source for T
where T: Deref, <T as Deref>::Target: Source,

Source§

type Slice<'a> = <<T as Deref>::Target as Source>::Slice<'a> where T: 'a

A type this Source can be sliced into.
Source§

fn len(&self) -> usize

Length of the source
Source§

fn read<'a, Chunk>(&'a self, offset: usize) -> Option<Chunk>
where Chunk: Chunk<'a>,

Read a chunk of bytes into an array. Returns None when reading out of bounds would occur. Read more
Source§

unsafe fn read_byte_unchecked(&self, offset: usize) -> u8

Read a byte without doing bounds checks. Read more
Source§

fn slice(&self, range: Range<usize>) -> Option<<T as Source>::Slice<'_>>

Get a slice of the source at given range. This is analogous to slice::get(range). Read more
Source§

unsafe fn slice_unchecked( &self, range: Range<usize>, ) -> <T as Source>::Slice<'_>

Get a slice of the source at given range. This is analogous to slice::get_unchecked(range). Read more
Source§

fn is_boundary(&self, index: usize) -> bool

Check if index is valid for this Source, that is: Read more
Source§

fn find_boundary(&self, index: usize) -> usize

For &str sources attempts to find the closest char boundary at which source can be sliced, starting from index. Read more
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> Upcast<T> for T

Source§

fn upcast(&self) -> Option<&T>

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,