pub enum ArgValue<'a> {
Owned(Box<dyn PartialReflect>),
Ref(&'a (dyn PartialReflect + 'static)),
Mut(&'a mut (dyn PartialReflect + 'static)),
}Available on crate feature
functions only.Expand description
Represents an argument that can be passed to a DynamicFunction or DynamicFunctionMut.
Variants§
Owned(Box<dyn PartialReflect>)
An owned argument.
Ref(&'a (dyn PartialReflect + 'static))
An immutable reference argument.
Mut(&'a mut (dyn PartialReflect + 'static))
A mutable reference argument.
Methods from Deref<Target = dyn PartialReflect>§
Sourcepub fn represents<T>(&self) -> bool
pub fn represents<T>(&self) -> bool
Returns true if the underlying value represents a value of type T, or false
otherwise.
Read is for more information on underlying values and represented types.
Examples found in repository?
examples/reflection/dynamic_types.rs (line 81)
12fn main() {
13 #[derive(Reflect, Default, PartialEq, Debug)]
14 #[reflect(Identifiable, Default)]
15 struct Player {
16 id: u32,
17 }
18
19 #[reflect_trait]
20 trait Identifiable {
21 fn id(&self) -> u32;
22 }
23
24 impl Identifiable for Player {
25 fn id(&self) -> u32 {
26 self.id
27 }
28 }
29
30 // Normally, when instantiating a type, you get back exactly that type.
31 // This is because the type is known at compile time.
32 // We call this the "concrete" or "canonical" type.
33 let player: Player = Player { id: 123 };
34
35 // When working with reflected types, however, we often "erase" this type information
36 // using the `Reflect` trait object.
37 // This trait object also gives us access to all the methods in the `PartialReflect` trait too.
38 // The underlying type is still the same (in this case, `Player`),
39 // but now we've hidden that information from the compiler.
40 let reflected: Box<dyn Reflect> = Box::new(player);
41
42 // Because it's the same type under the hood, we can still downcast it back to the original type.
43 assert!(reflected.downcast_ref::<Player>().is_some());
44
45 // We can attempt to clone our value using `PartialReflect::reflect_clone`.
46 // This will recursively call `PartialReflect::reflect_clone` on all fields of the type.
47 // Or, if we had registered `ReflectClone` using `#[reflect(Clone)]`, it would simply call `Clone::clone` directly.
48 let cloned: Box<dyn Reflect> = reflected.reflect_clone().unwrap();
49 assert_eq!(cloned.downcast_ref::<Player>(), Some(&Player { id: 123 }));
50
51 // Another way we can "clone" our data is by converting it to a dynamic type.
52 // Notice here we bind it as a `dyn PartialReflect` instead of `dyn Reflect`.
53 // This is because it returns a dynamic type that simply represents the original type.
54 // In this case, because `Player` is a struct, it will return a `DynamicStruct`.
55 let dynamic: Box<dyn PartialReflect> = reflected.to_dynamic();
56 assert!(dynamic.is_dynamic());
57
58 // And if we try to convert it back to a `dyn Reflect` trait object, we'll get `None`.
59 // Dynamic types cannot be directly cast to `dyn Reflect` trait objects.
60 assert!(dynamic.try_as_reflect().is_none());
61
62 // Generally dynamic types are used to represent (or "proxy") the original type,
63 // so that we can continue to access its fields and overall structure.
64 let dynamic_ref = dynamic.reflect_ref().as_struct().unwrap();
65 let id = dynamic_ref.field("id").unwrap().try_downcast_ref::<u32>();
66 assert_eq!(id, Some(&123));
67
68 // It also enables us to create a representation of a type without having compile-time
69 // access to the actual type. This is how the reflection deserializers work.
70 // They generally can't know how to construct a type ahead of time,
71 // so they instead build and return these dynamic representations.
72 let input = "(id: 123)";
73 let mut registry = TypeRegistry::default();
74 registry.register::<Player>();
75 let registration = registry.get(std::any::TypeId::of::<Player>()).unwrap();
76 let deserialized = TypedReflectDeserializer::new(registration, ®istry)
77 .deserialize(&mut ron::Deserializer::from_str(input).unwrap())
78 .unwrap();
79
80 // Our deserialized output is a `DynamicStruct` that proxies/represents a `Player`.
81 assert!(deserialized.represents::<Player>());
82
83 // And while this does allow us to access the fields and structure of the type,
84 // there may be instances where we need the actual type.
85 // For example, if we want to convert our `dyn Reflect` into a `dyn Identifiable`,
86 // we can't use the `DynamicStruct` proxy.
87 let reflect_identifiable = registration
88 .data::<ReflectIdentifiable>()
89 .expect("`ReflectIdentifiable` should be registered");
90
91 // Trying to access the registry with our `deserialized` will give a compile error
92 // since it doesn't implement `Reflect`, only `PartialReflect`.
93 // Similarly, trying to force the operation will fail.
94 // This fails since the underlying type of `deserialized` is `DynamicStruct` and not `Player`.
95 assert!(deserialized
96 .try_as_reflect()
97 .and_then(|reflect_trait_obj| reflect_identifiable.get(reflect_trait_obj))
98 .is_none());
99
100 // So how can we go from a dynamic type to a concrete type?
101 // There are two ways:
102
103 // 1. Using `PartialReflect::apply`.
104 {
105 // If you know the type at compile time, you can construct a new value and apply the dynamic
106 // value to it.
107 let mut value = Player::default();
108 value.apply(deserialized.as_ref());
109 assert_eq!(value.id, 123);
110
111 // If you don't know the type at compile time, you need a dynamic way of constructing
112 // an instance of the type. One such way is to use the `ReflectDefault` type data.
113 let reflect_default = registration
114 .data::<ReflectDefault>()
115 .expect("`ReflectDefault` should be registered");
116
117 let mut value: Box<dyn Reflect> = reflect_default.default();
118 value.apply(deserialized.as_ref());
119
120 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
121 assert_eq!(identifiable.id(), 123);
122 }
123
124 // 2. Using `FromReflect`
125 {
126 // If you know the type at compile time, you can use the `FromReflect` trait to convert the
127 // dynamic value into the concrete type directly.
128 let value: Player = Player::from_reflect(deserialized.as_ref()).unwrap();
129 assert_eq!(value.id, 123);
130
131 // If you don't know the type at compile time, you can use the `ReflectFromReflect` type data
132 // to perform the conversion dynamically.
133 let reflect_from_reflect = registration
134 .data::<ReflectFromReflect>()
135 .expect("`ReflectFromReflect` should be registered");
136
137 let value: Box<dyn Reflect> = reflect_from_reflect
138 .from_reflect(deserialized.as_ref())
139 .unwrap();
140 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
141 assert_eq!(identifiable.id(), 123);
142 }
143
144 // Lastly, while dynamic types are commonly generated via reflection methods like
145 // `PartialReflect::to_dynamic` or via the reflection deserializers,
146 // you can also construct them manually.
147 let mut my_dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
148
149 // This is useful when you just need to apply some subset of changes to a type.
150 let mut my_list: Vec<u32> = Vec::new();
151 my_list.apply(&my_dynamic_list);
152 assert_eq!(my_list, vec![1, 2, 3]);
153
154 // And if you want it to actually proxy a type, you can configure it to do that as well:
155 assert!(!my_dynamic_list
156 .as_partial_reflect()
157 .represents::<Vec<u32>>());
158 my_dynamic_list.set_represented_type(Some(<Vec<u32>>::type_info()));
159 assert!(my_dynamic_list
160 .as_partial_reflect()
161 .represents::<Vec<u32>>());
162
163 // ============================= REFERENCE ============================= //
164 // For reference, here are all the available dynamic types:
165
166 // 1. `DynamicTuple`
167 {
168 let mut dynamic_tuple = DynamicTuple::default();
169 dynamic_tuple.insert(1u32);
170 dynamic_tuple.insert(2u32);
171 dynamic_tuple.insert(3u32);
172
173 let mut my_tuple: (u32, u32, u32) = (0, 0, 0);
174 my_tuple.apply(&dynamic_tuple);
175 assert_eq!(my_tuple, (1, 2, 3));
176 }
177
178 // 2. `DynamicArray`
179 {
180 let dynamic_array = DynamicArray::from_iter([1u32, 2u32, 3u32]);
181
182 let mut my_array = [0u32; 3];
183 my_array.apply(&dynamic_array);
184 assert_eq!(my_array, [1, 2, 3]);
185 }
186
187 // 3. `DynamicList`
188 {
189 let dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
190
191 let mut my_list: Vec<u32> = Vec::new();
192 my_list.apply(&dynamic_list);
193 assert_eq!(my_list, vec![1, 2, 3]);
194 }
195
196 // 4. `DynamicSet`
197 {
198 let mut dynamic_set = DynamicSet::from_iter(["x", "y", "z"]);
199 assert!(dynamic_set.contains(&"x"));
200
201 dynamic_set.remove(&"y");
202
203 let mut my_set: HashSet<&str> = HashSet::default();
204 my_set.apply(&dynamic_set);
205 assert_eq!(my_set, HashSet::from_iter(["x", "z"]));
206 }
207
208 // 5. `DynamicMap`
209 {
210 let dynamic_map = DynamicMap::from_iter([("x", 1u32), ("y", 2u32), ("z", 3u32)]);
211
212 let mut my_map: HashMap<&str, u32> = HashMap::default();
213 my_map.apply(&dynamic_map);
214 assert_eq!(my_map.get("x"), Some(&1));
215 assert_eq!(my_map.get("y"), Some(&2));
216 assert_eq!(my_map.get("z"), Some(&3));
217 }
218
219 // 6. `DynamicStruct`
220 {
221 #[derive(Reflect, Default, Debug, PartialEq)]
222 struct MyStruct {
223 x: u32,
224 y: u32,
225 z: u32,
226 }
227
228 let mut dynamic_struct = DynamicStruct::default();
229 dynamic_struct.insert("x", 1u32);
230 dynamic_struct.insert("y", 2u32);
231 dynamic_struct.insert("z", 3u32);
232
233 let mut my_struct = MyStruct::default();
234 my_struct.apply(&dynamic_struct);
235 assert_eq!(my_struct, MyStruct { x: 1, y: 2, z: 3 });
236 }
237
238 // 7. `DynamicTupleStruct`
239 {
240 #[derive(Reflect, Default, Debug, PartialEq)]
241 struct MyTupleStruct(u32, u32, u32);
242
243 let mut dynamic_tuple_struct = DynamicTupleStruct::default();
244 dynamic_tuple_struct.insert(1u32);
245 dynamic_tuple_struct.insert(2u32);
246 dynamic_tuple_struct.insert(3u32);
247
248 let mut my_tuple_struct = MyTupleStruct::default();
249 my_tuple_struct.apply(&dynamic_tuple_struct);
250 assert_eq!(my_tuple_struct, MyTupleStruct(1, 2, 3));
251 }
252
253 // 8. `DynamicEnum`
254 {
255 #[derive(Reflect, Default, Debug, PartialEq)]
256 enum MyEnum {
257 #[default]
258 Empty,
259 Xyz(u32, u32, u32),
260 }
261
262 let mut values = DynamicTuple::default();
263 values.insert(1u32);
264 values.insert(2u32);
265 values.insert(3u32);
266
267 let dynamic_variant = DynamicVariant::Tuple(values);
268 let dynamic_enum = DynamicEnum::new("Xyz", dynamic_variant);
269
270 let mut my_enum = MyEnum::default();
271 my_enum.apply(&dynamic_enum);
272 assert_eq!(my_enum, MyEnum::Xyz(1, 2, 3));
273 }
274}Sourcepub fn try_downcast_ref<T>(&self) -> Option<&T>where
T: Any,
pub fn try_downcast_ref<T>(&self) -> Option<&T>where
T: Any,
Downcasts the value to type T by reference.
If the underlying value does not implement Reflect
or is not of type T, returns None.
For remote types, T should be the type itself rather than the wrapper type.
Examples found in repository?
examples/reflection/reflection_types.rs (line 49)
49#[reflect(Hash, PartialEq, Clone)]
50pub struct E {
51 x: usize,
52}
53
54/// By default, deriving with Reflect assumes the type is either a "struct" or an "enum".
55///
56/// You can tell reflect to treat your type instead as an "opaque type" by using the `#[reflect(opaque)]`.
57/// It is generally a good idea to implement (and reflect) the `PartialEq` and `Clone` (optionally also `Serialize` and `Deserialize`)
58/// traits on opaque types to ensure that these values behave as expected when nested in other reflected types.
59#[derive(Reflect, Copy, Clone, PartialEq, Eq, Serialize, Deserialize)]
60#[reflect(opaque)]
61#[reflect(PartialEqMore examples
examples/reflection/function_reflection.rs (line 162)
19fn main() {
20 // There are times when it may be helpful to store a function away for later.
21 // In Rust, we can do this by storing either a function pointer or a function trait object.
22 // For example, say we wanted to store the following function:
23 fn add(left: i32, right: i32) -> i32 {
24 left + right
25 }
26
27 // We could store it as either of the following:
28 let fn_pointer: fn(i32, i32) -> i32 = add;
29 let fn_trait_object: Box<dyn Fn(i32, i32) -> i32> = Box::new(add);
30
31 // And we can call them like so:
32 let result = fn_pointer(2, 2);
33 assert_eq!(result, 4);
34 let result = fn_trait_object(2, 2);
35 assert_eq!(result, 4);
36
37 // However, you'll notice that we have to know the types of the arguments and return value at compile time.
38 // This means there's not really a way to store or call these functions dynamically at runtime.
39 // Luckily, Bevy's reflection crate comes with a set of tools for doing just that!
40 // We do this by first converting our function into the reflection-based `DynamicFunction` type
41 // using the `IntoFunction` trait.
42 let function: DynamicFunction<'static> = dbg!(add.into_function());
43
44 // This time, you'll notice that `DynamicFunction` doesn't take any information about the function's arguments or return value.
45 // This is because `DynamicFunction` checks the types of the arguments and return value at runtime.
46 // Now we can generate a list of arguments:
47 let args: ArgList = dbg!(ArgList::new().with_owned(2_i32).with_owned(2_i32));
48
49 // And finally, we can call the function.
50 // This returns a `Result` indicating whether the function was called successfully.
51 // For now, we'll just unwrap it to get our `Return` value,
52 // which is an enum containing the function's return value.
53 let return_value: Return = dbg!(function.call(args).unwrap());
54
55 // The `Return` value can be pattern matched or unwrapped to get the underlying reflection data.
56 // For the sake of brevity, we'll just unwrap it here and downcast it to the expected type of `i32`.
57 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
58 assert_eq!(value.try_take::<i32>().unwrap(), 4);
59
60 // The same can also be done for closures that capture references to their environment.
61 // Closures that capture their environment immutably can be converted into a `DynamicFunction`
62 // using the `IntoFunction` trait.
63 let minimum = 5;
64 let clamp = |value: i32| value.max(minimum);
65
66 let function: DynamicFunction = dbg!(clamp.into_function());
67 let args = dbg!(ArgList::new().with_owned(2_i32));
68 let return_value = dbg!(function.call(args).unwrap());
69 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
70 assert_eq!(value.try_take::<i32>().unwrap(), 5);
71
72 // We can also handle closures that capture their environment mutably
73 // using the `IntoFunctionMut` trait.
74 let mut count = 0;
75 let increment = |amount: i32| count += amount;
76
77 let closure: DynamicFunctionMut = dbg!(increment.into_function_mut());
78 let args = dbg!(ArgList::new().with_owned(5_i32));
79
80 // Because `DynamicFunctionMut` mutably borrows `total`,
81 // it will need to be dropped before `total` can be accessed again.
82 // This can be done manually with `drop(closure)` or by using the `DynamicFunctionMut::call_once` method.
83 dbg!(closure.call_once(args).unwrap());
84 assert_eq!(count, 5);
85
86 // Generic functions can also be converted into a `DynamicFunction`,
87 // however, they will need to be manually monomorphized first.
88 fn stringify<T: ToString>(value: T) -> String {
89 value.to_string()
90 }
91
92 // We have to manually specify the concrete generic type we want to use.
93 let function = stringify::<i32>.into_function();
94
95 let args = ArgList::new().with_owned(123_i32);
96 let return_value = function.call(args).unwrap();
97 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
98 assert_eq!(value.try_take::<String>().unwrap(), "123");
99
100 // To make things a little easier, we can also "overload" functions.
101 // This makes it so that a single `DynamicFunction` can represent multiple functions,
102 // and the correct one is chosen based on the types of the arguments.
103 // Each function overload must have a unique argument signature.
104 let function = stringify::<i32>
105 .into_function()
106 .with_overload(stringify::<f32>);
107
108 // Now our `function` accepts both `i32` and `f32` arguments.
109 let args = ArgList::new().with_owned(1.23_f32);
110 let return_value = function.call(args).unwrap();
111 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
112 assert_eq!(value.try_take::<String>().unwrap(), "1.23");
113
114 // Function overloading even allows us to have a variable number of arguments.
115 let function = (|| 0)
116 .into_function()
117 .with_overload(|a: i32| a)
118 .with_overload(|a: i32, b: i32| a + b)
119 .with_overload(|a: i32, b: i32, c: i32| a + b + c);
120
121 let args = ArgList::new()
122 .with_owned(1_i32)
123 .with_owned(2_i32)
124 .with_owned(3_i32);
125 let return_value = function.call(args).unwrap();
126 let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
127 assert_eq!(value.try_take::<i32>().unwrap(), 6);
128
129 // As stated earlier, `IntoFunction` works for many kinds of simple functions.
130 // Functions with non-reflectable arguments or return values may not be able to be converted.
131 // Generic functions are also not supported (unless manually monomorphized like `foo::<i32>.into_function()`).
132 // Additionally, the lifetime of the return value is tied to the lifetime of the first argument.
133 // However, this means that many methods (i.e. functions with a `self` parameter) are also supported:
134 #[derive(Reflect, Default)]
135 struct Data {
136 value: String,
137 }
138
139 impl Data {
140 fn set_value(&mut self, value: String) {
141 self.value = value;
142 }
143
144 // Note that only `&'static str` implements `Reflect`.
145 // To get around this limitation we can use `&String` instead.
146 fn get_value(&self) -> &String {
147 &self.value
148 }
149 }
150
151 let mut data = Data::default();
152
153 let set_value = dbg!(Data::set_value.into_function());
154 let args = dbg!(ArgList::new().with_mut(&mut data)).with_owned(String::from("Hello, world!"));
155 dbg!(set_value.call(args).unwrap());
156 assert_eq!(data.value, "Hello, world!");
157
158 let get_value = dbg!(Data::get_value.into_function());
159 let args = dbg!(ArgList::new().with_ref(&data));
160 let return_value = dbg!(get_value.call(args).unwrap());
161 let value: &dyn PartialReflect = return_value.unwrap_ref();
162 assert_eq!(value.try_downcast_ref::<String>().unwrap(), "Hello, world!");
163
164 // For more complex use cases, you can always create a custom `DynamicFunction` manually.
165 // This is useful for functions that can't be converted via the `IntoFunction` trait.
166 // For example, this function doesn't implement `IntoFunction` due to the fact that
167 // the lifetime of the return value is not tied to the lifetime of the first argument.
168 fn get_or_insert(value: i32, container: &mut Option<i32>) -> &i32 {
169 if container.is_none() {
170 *container = Some(value);
171 }
172
173 container.as_ref().unwrap()
174 }
175
176 let get_or_insert_function = dbg!(DynamicFunction::new(
177 |mut args: ArgList| -> FunctionResult {
178 // The `ArgList` contains the arguments in the order they were pushed.
179 // The `DynamicFunction` will validate that the list contains
180 // exactly the number of arguments we expect.
181 // We can retrieve them out in order (note that this modifies the `ArgList`):
182 let value = args.take::<i32>()?;
183 let container = args.take::<&mut Option<i32>>()?;
184
185 // We could have also done the following to make use of type inference:
186 // let value = args.take_owned()?;
187 // let container = args.take_mut()?;
188
189 Ok(Return::Ref(get_or_insert(value, container)))
190 },
191 // Functions can be either anonymous or named.
192 // It's good practice, though, to try and name your functions whenever possible.
193 // This makes it easier to debug and is also required for function registration.
194 // We can either give it a custom name or use the function's type name as
195 // derived from `std::any::type_name_of_val`.
196 SignatureInfo::named(std::any::type_name_of_val(&get_or_insert))
197 // We can always change the name if needed.
198 // It's a good idea to also ensure that the name is unique,
199 // such as by using its type name or by prefixing it with your crate name.
200 .with_name("my_crate::get_or_insert")
201 // Since our function takes arguments, we should provide that argument information.
202 // This is used to validate arguments when calling the function.
203 // And it aids consumers of the function with their own validation and debugging.
204 // Arguments should be provided in the order they are defined in the function.
205 .with_arg::<i32>("value")
206 .with_arg::<&mut Option<i32>>("container")
207 // We can provide return information as well.
208 .with_return::<&i32>(),
209 ));
210
211 let mut container: Option<i32> = None;
212
213 let args = dbg!(ArgList::new().with_owned(5_i32).with_mut(&mut container));
214 let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
215 assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
216
217 let args = dbg!(ArgList::new().with_owned(500_i32).with_mut(&mut container));
218 let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
219 assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
220}examples/reflection/dynamic_types.rs (line 65)
12fn main() {
13 #[derive(Reflect, Default, PartialEq, Debug)]
14 #[reflect(Identifiable, Default)]
15 struct Player {
16 id: u32,
17 }
18
19 #[reflect_trait]
20 trait Identifiable {
21 fn id(&self) -> u32;
22 }
23
24 impl Identifiable for Player {
25 fn id(&self) -> u32 {
26 self.id
27 }
28 }
29
30 // Normally, when instantiating a type, you get back exactly that type.
31 // This is because the type is known at compile time.
32 // We call this the "concrete" or "canonical" type.
33 let player: Player = Player { id: 123 };
34
35 // When working with reflected types, however, we often "erase" this type information
36 // using the `Reflect` trait object.
37 // This trait object also gives us access to all the methods in the `PartialReflect` trait too.
38 // The underlying type is still the same (in this case, `Player`),
39 // but now we've hidden that information from the compiler.
40 let reflected: Box<dyn Reflect> = Box::new(player);
41
42 // Because it's the same type under the hood, we can still downcast it back to the original type.
43 assert!(reflected.downcast_ref::<Player>().is_some());
44
45 // We can attempt to clone our value using `PartialReflect::reflect_clone`.
46 // This will recursively call `PartialReflect::reflect_clone` on all fields of the type.
47 // Or, if we had registered `ReflectClone` using `#[reflect(Clone)]`, it would simply call `Clone::clone` directly.
48 let cloned: Box<dyn Reflect> = reflected.reflect_clone().unwrap();
49 assert_eq!(cloned.downcast_ref::<Player>(), Some(&Player { id: 123 }));
50
51 // Another way we can "clone" our data is by converting it to a dynamic type.
52 // Notice here we bind it as a `dyn PartialReflect` instead of `dyn Reflect`.
53 // This is because it returns a dynamic type that simply represents the original type.
54 // In this case, because `Player` is a struct, it will return a `DynamicStruct`.
55 let dynamic: Box<dyn PartialReflect> = reflected.to_dynamic();
56 assert!(dynamic.is_dynamic());
57
58 // And if we try to convert it back to a `dyn Reflect` trait object, we'll get `None`.
59 // Dynamic types cannot be directly cast to `dyn Reflect` trait objects.
60 assert!(dynamic.try_as_reflect().is_none());
61
62 // Generally dynamic types are used to represent (or "proxy") the original type,
63 // so that we can continue to access its fields and overall structure.
64 let dynamic_ref = dynamic.reflect_ref().as_struct().unwrap();
65 let id = dynamic_ref.field("id").unwrap().try_downcast_ref::<u32>();
66 assert_eq!(id, Some(&123));
67
68 // It also enables us to create a representation of a type without having compile-time
69 // access to the actual type. This is how the reflection deserializers work.
70 // They generally can't know how to construct a type ahead of time,
71 // so they instead build and return these dynamic representations.
72 let input = "(id: 123)";
73 let mut registry = TypeRegistry::default();
74 registry.register::<Player>();
75 let registration = registry.get(std::any::TypeId::of::<Player>()).unwrap();
76 let deserialized = TypedReflectDeserializer::new(registration, ®istry)
77 .deserialize(&mut ron::Deserializer::from_str(input).unwrap())
78 .unwrap();
79
80 // Our deserialized output is a `DynamicStruct` that proxies/represents a `Player`.
81 assert!(deserialized.represents::<Player>());
82
83 // And while this does allow us to access the fields and structure of the type,
84 // there may be instances where we need the actual type.
85 // For example, if we want to convert our `dyn Reflect` into a `dyn Identifiable`,
86 // we can't use the `DynamicStruct` proxy.
87 let reflect_identifiable = registration
88 .data::<ReflectIdentifiable>()
89 .expect("`ReflectIdentifiable` should be registered");
90
91 // Trying to access the registry with our `deserialized` will give a compile error
92 // since it doesn't implement `Reflect`, only `PartialReflect`.
93 // Similarly, trying to force the operation will fail.
94 // This fails since the underlying type of `deserialized` is `DynamicStruct` and not `Player`.
95 assert!(deserialized
96 .try_as_reflect()
97 .and_then(|reflect_trait_obj| reflect_identifiable.get(reflect_trait_obj))
98 .is_none());
99
100 // So how can we go from a dynamic type to a concrete type?
101 // There are two ways:
102
103 // 1. Using `PartialReflect::apply`.
104 {
105 // If you know the type at compile time, you can construct a new value and apply the dynamic
106 // value to it.
107 let mut value = Player::default();
108 value.apply(deserialized.as_ref());
109 assert_eq!(value.id, 123);
110
111 // If you don't know the type at compile time, you need a dynamic way of constructing
112 // an instance of the type. One such way is to use the `ReflectDefault` type data.
113 let reflect_default = registration
114 .data::<ReflectDefault>()
115 .expect("`ReflectDefault` should be registered");
116
117 let mut value: Box<dyn Reflect> = reflect_default.default();
118 value.apply(deserialized.as_ref());
119
120 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
121 assert_eq!(identifiable.id(), 123);
122 }
123
124 // 2. Using `FromReflect`
125 {
126 // If you know the type at compile time, you can use the `FromReflect` trait to convert the
127 // dynamic value into the concrete type directly.
128 let value: Player = Player::from_reflect(deserialized.as_ref()).unwrap();
129 assert_eq!(value.id, 123);
130
131 // If you don't know the type at compile time, you can use the `ReflectFromReflect` type data
132 // to perform the conversion dynamically.
133 let reflect_from_reflect = registration
134 .data::<ReflectFromReflect>()
135 .expect("`ReflectFromReflect` should be registered");
136
137 let value: Box<dyn Reflect> = reflect_from_reflect
138 .from_reflect(deserialized.as_ref())
139 .unwrap();
140 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
141 assert_eq!(identifiable.id(), 123);
142 }
143
144 // Lastly, while dynamic types are commonly generated via reflection methods like
145 // `PartialReflect::to_dynamic` or via the reflection deserializers,
146 // you can also construct them manually.
147 let mut my_dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
148
149 // This is useful when you just need to apply some subset of changes to a type.
150 let mut my_list: Vec<u32> = Vec::new();
151 my_list.apply(&my_dynamic_list);
152 assert_eq!(my_list, vec![1, 2, 3]);
153
154 // And if you want it to actually proxy a type, you can configure it to do that as well:
155 assert!(!my_dynamic_list
156 .as_partial_reflect()
157 .represents::<Vec<u32>>());
158 my_dynamic_list.set_represented_type(Some(<Vec<u32>>::type_info()));
159 assert!(my_dynamic_list
160 .as_partial_reflect()
161 .represents::<Vec<u32>>());
162
163 // ============================= REFERENCE ============================= //
164 // For reference, here are all the available dynamic types:
165
166 // 1. `DynamicTuple`
167 {
168 let mut dynamic_tuple = DynamicTuple::default();
169 dynamic_tuple.insert(1u32);
170 dynamic_tuple.insert(2u32);
171 dynamic_tuple.insert(3u32);
172
173 let mut my_tuple: (u32, u32, u32) = (0, 0, 0);
174 my_tuple.apply(&dynamic_tuple);
175 assert_eq!(my_tuple, (1, 2, 3));
176 }
177
178 // 2. `DynamicArray`
179 {
180 let dynamic_array = DynamicArray::from_iter([1u32, 2u32, 3u32]);
181
182 let mut my_array = [0u32; 3];
183 my_array.apply(&dynamic_array);
184 assert_eq!(my_array, [1, 2, 3]);
185 }
186
187 // 3. `DynamicList`
188 {
189 let dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
190
191 let mut my_list: Vec<u32> = Vec::new();
192 my_list.apply(&dynamic_list);
193 assert_eq!(my_list, vec![1, 2, 3]);
194 }
195
196 // 4. `DynamicSet`
197 {
198 let mut dynamic_set = DynamicSet::from_iter(["x", "y", "z"]);
199 assert!(dynamic_set.contains(&"x"));
200
201 dynamic_set.remove(&"y");
202
203 let mut my_set: HashSet<&str> = HashSet::default();
204 my_set.apply(&dynamic_set);
205 assert_eq!(my_set, HashSet::from_iter(["x", "z"]));
206 }
207
208 // 5. `DynamicMap`
209 {
210 let dynamic_map = DynamicMap::from_iter([("x", 1u32), ("y", 2u32), ("z", 3u32)]);
211
212 let mut my_map: HashMap<&str, u32> = HashMap::default();
213 my_map.apply(&dynamic_map);
214 assert_eq!(my_map.get("x"), Some(&1));
215 assert_eq!(my_map.get("y"), Some(&2));
216 assert_eq!(my_map.get("z"), Some(&3));
217 }
218
219 // 6. `DynamicStruct`
220 {
221 #[derive(Reflect, Default, Debug, PartialEq)]
222 struct MyStruct {
223 x: u32,
224 y: u32,
225 z: u32,
226 }
227
228 let mut dynamic_struct = DynamicStruct::default();
229 dynamic_struct.insert("x", 1u32);
230 dynamic_struct.insert("y", 2u32);
231 dynamic_struct.insert("z", 3u32);
232
233 let mut my_struct = MyStruct::default();
234 my_struct.apply(&dynamic_struct);
235 assert_eq!(my_struct, MyStruct { x: 1, y: 2, z: 3 });
236 }
237
238 // 7. `DynamicTupleStruct`
239 {
240 #[derive(Reflect, Default, Debug, PartialEq)]
241 struct MyTupleStruct(u32, u32, u32);
242
243 let mut dynamic_tuple_struct = DynamicTupleStruct::default();
244 dynamic_tuple_struct.insert(1u32);
245 dynamic_tuple_struct.insert(2u32);
246 dynamic_tuple_struct.insert(3u32);
247
248 let mut my_tuple_struct = MyTupleStruct::default();
249 my_tuple_struct.apply(&dynamic_tuple_struct);
250 assert_eq!(my_tuple_struct, MyTupleStruct(1, 2, 3));
251 }
252
253 // 8. `DynamicEnum`
254 {
255 #[derive(Reflect, Default, Debug, PartialEq)]
256 enum MyEnum {
257 #[default]
258 Empty,
259 Xyz(u32, u32, u32),
260 }
261
262 let mut values = DynamicTuple::default();
263 values.insert(1u32);
264 values.insert(2u32);
265 values.insert(3u32);
266
267 let dynamic_variant = DynamicVariant::Tuple(values);
268 let dynamic_enum = DynamicEnum::new("Xyz", dynamic_variant);
269
270 let mut my_enum = MyEnum::default();
271 my_enum.apply(&dynamic_enum);
272 assert_eq!(my_enum, MyEnum::Xyz(1, 2, 3));
273 }
274}Trait Implementations§
Auto Trait Implementations§
impl<'a> Freeze for ArgValue<'a>
impl<'a> !RefUnwindSafe for ArgValue<'a>
impl<'a> Send for ArgValue<'a>
impl<'a> Sync for ArgValue<'a>
impl<'a> Unpin for ArgValue<'a>
impl<'a> !UnwindSafe for ArgValue<'a>
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
Return the
T ShaderType for self. When used in AsBindGroup
derives, it is safe to assume that all images in self exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Converts
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be
downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Converts
Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further
downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Converts
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Converts
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> FmtForward for T
impl<T> FmtForward for T
Source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
Causes
self to use its Binary implementation when Debug-formatted.Source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
Causes
self to use its Display implementation when
Debug-formatted.Source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
Causes
self to use its LowerExp implementation when
Debug-formatted.Source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
Causes
self to use its LowerHex implementation when
Debug-formatted.Source§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
Causes
self to use its Octal implementation when Debug-formatted.Source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
Causes
self to use its Pointer implementation when
Debug-formatted.Source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
Causes
self to use its UpperExp implementation when
Debug-formatted.Source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
Causes
self to use its UpperHex implementation when
Debug-formatted.Source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
Source§impl<T> Identity for Twhere
T: ?Sized,
impl<T> Identity for Twhere
T: ?Sized,
Source§impl<T> InitializeFromFunction<T> for T
impl<T> InitializeFromFunction<T> for T
Source§fn initialize_from_function(f: fn() -> T) -> T
fn initialize_from_function(f: fn() -> T) -> T
Create an instance of this type from an initialization function
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoResult<T> for T
impl<T> IntoResult<T> for T
Source§fn into_result(self) -> Result<T, RunSystemError>
fn into_result(self) -> Result<T, RunSystemError>
Converts this type into the system output type.
Source§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
Source§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
Source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
Pipes by value. This is generally the method you want to use. Read more
Source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
Borrows
self and passes that borrow into the pipe function. Read moreSource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
Mutably borrows
self and passes that borrow into the pipe function. Read moreSource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
Source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
Source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
Borrows
self, then passes self.as_ref() into the pipe function.Source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
Mutably borrows
self, then passes self.as_mut() into the pipe
function.Source§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
Borrows
self, then passes self.deref() into the pipe function.Source§impl<Ret> SpawnIfAsync<(), Ret> for Ret
impl<Ret> SpawnIfAsync<(), Ret> for Ret
Source§impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
Source§fn super_from(input: T) -> O
fn super_from(input: T) -> O
Convert from a type to another type.
Source§impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
Source§fn super_into(self) -> O
fn super_into(self) -> O
Convert from a type to another type.
Source§impl<T> Tap for T
impl<T> Tap for T
Source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Immutable access to the
Borrow<B> of a value. Read moreSource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
Mutable access to the
BorrowMut<B> of a value. Read moreSource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
Immutable access to the
AsRef<R> view of a value. Read moreSource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
Mutable access to the
AsMut<R> view of a value. Read moreSource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Immutable access to the
Deref::Target of a value. Read moreSource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Mutable access to the
Deref::Target of a value. Read moreSource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
Calls
.tap() only in debug builds, and is erased in release builds.Source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
Calls
.tap_mut() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
Calls
.tap_borrow() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
Calls
.tap_borrow_mut() only in debug builds, and is erased in release
builds.Source§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
Calls
.tap_ref() only in debug builds, and is erased in release
builds.Source§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
Calls
.tap_ref_mut() only in debug builds, and is erased in release
builds.Source§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
Calls
.tap_deref() only in debug builds, and is erased in release
builds.