AtomicBool

Struct AtomicBool 

1.0.0 · Source
pub struct AtomicBool { /* private fields */ }
Available on target_has_atomic_load_store=8 only.
Expand description

A boolean type which can be safely shared between threads.

This type has the same size, alignment, and bit validity as a bool.

Note: This type is only available on platforms that support atomic loads and stores of u8.

Implementations§

Source§

impl AtomicBool

1.0.0 (const: 1.24.0) · Source

pub const fn new(v: bool) -> AtomicBool

Creates a new AtomicBool.

§Examples
use std::sync::atomic::AtomicBool;

let atomic_true = AtomicBool::new(true);
let atomic_false = AtomicBool::new(false);
1.75.0 (const: 1.84.0) · Source

pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool

Creates a new AtomicBool from a pointer.

§Examples
use std::sync::atomic::{self, AtomicBool};

// Get a pointer to an allocated value
let ptr: *mut bool = Box::into_raw(Box::new(false));

assert!(ptr.cast::<AtomicBool>().is_aligned());

{
    // Create an atomic view of the allocated value
    let atomic = unsafe { AtomicBool::from_ptr(ptr) };

    // Use `atomic` for atomic operations, possibly share it with other threads
    atomic.store(true, atomic::Ordering::Relaxed);
}

// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, true);

// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }
§Safety
  • ptr must be aligned to align_of::<AtomicBool>() (note that this is always true, since align_of::<AtomicBool>() == 1).
  • ptr must be valid for both reads and writes for the whole lifetime 'a.
  • You must adhere to the Memory model for atomic accesses. In particular, it is not allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different sizes, without synchronization.
1.15.0 · Source

pub fn get_mut(&mut self) -> &mut bool

Returns a mutable reference to the underlying bool.

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let mut some_bool = AtomicBool::new(true);
assert_eq!(*some_bool.get_mut(), true);
*some_bool.get_mut() = false;
assert_eq!(some_bool.load(Ordering::SeqCst), false);
Source

pub fn from_mut(v: &mut bool) -> &mut AtomicBool

🔬This is a nightly-only experimental API. (atomic_from_mut)
Available on target_has_atomic_equal_alignment=8 only.

Gets atomic access to a &mut bool.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};

let mut some_bool = true;
let a = AtomicBool::from_mut(&mut some_bool);
a.store(false, Ordering::Relaxed);
assert_eq!(some_bool, false);
Source

pub fn get_mut_slice(this: &mut [AtomicBool]) -> &mut [bool]

🔬This is a nightly-only experimental API. (atomic_from_mut)

Gets non-atomic access to a &mut [AtomicBool] slice.

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};

let mut some_bools = [const { AtomicBool::new(false) }; 10];

let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
assert_eq!(view, [false; 10]);
view[..5].copy_from_slice(&[true; 5]);

std::thread::scope(|s| {
    for t in &some_bools[..5] {
        s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
    }

    for f in &some_bools[5..] {
        s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
    }
});
Source

pub fn from_mut_slice(v: &mut [bool]) -> &mut [AtomicBool]

🔬This is a nightly-only experimental API. (atomic_from_mut)
Available on target_has_atomic_equal_alignment=8 only.

Gets atomic access to a &mut [bool] slice.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicBool, Ordering};

let mut some_bools = [false; 10];
let a = &*AtomicBool::from_mut_slice(&mut some_bools);
std::thread::scope(|s| {
    for i in 0..a.len() {
        s.spawn(move || a[i].store(true, Ordering::Relaxed));
    }
});
assert_eq!(some_bools, [true; 10]);
1.15.0 (const: 1.79.0) · Source

pub const fn into_inner(self) -> bool

Consumes the atomic and returns the contained value.

This is safe because passing self by value guarantees that no other threads are concurrently accessing the atomic data.

§Examples
use std::sync::atomic::AtomicBool;

let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.into_inner(), true);
1.0.0 · Source

pub fn load(&self, order: Ordering) -> bool

Loads a value from the bool.

load takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.

§Panics

Panics if order is Release or AcqRel.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.load(Ordering::Relaxed), true);
1.0.0 · Source

pub fn store(&self, val: bool, order: Ordering)

Stores a value into the bool.

store takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.

§Panics

Panics if order is Acquire or AcqRel.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

some_bool.store(false, Ordering::Relaxed);
assert_eq!(some_bool.load(Ordering::Relaxed), false);
1.0.0 · Source

pub fn swap(&self, val: bool, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Stores a value into the bool, returning the previous value.

swap takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);
1.0.0 · Source

pub fn compare_and_swap( &self, current: bool, new: bool, order: Ordering, ) -> bool

👎Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead
Available on target_has_atomic=8 only.

Stores a value into the bool if the current value is the same as the current value.

The return value is always the previous value. If it is equal to current, then the value was updated.

compare_and_swap also takes an Ordering argument which describes the memory ordering of this operation. Notice that even when using AcqRel, the operation might fail and hence just perform an Acquire load, but not have Release semantics. Using Acquire makes the store part of this operation Relaxed if it happens, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Migrating to compare_exchange and compare_exchange_weak

compare_and_swap is equivalent to compare_exchange with the following mapping for memory orderings:

OriginalSuccessFailure
RelaxedRelaxedRelaxed
AcquireAcquireAcquire
ReleaseReleaseRelaxed
AcqRelAcqRelAcquire
SeqCstSeqCstSeqCst

compare_and_swap and compare_exchange also differ in their return type. You can use compare_exchange(...).unwrap_or_else(|x| x) to recover the behavior of compare_and_swap, but in most cases it is more idiomatic to check whether the return value is Ok or Err rather than to infer success vs failure based on the value that was read.

During migration, consider whether it makes sense to use compare_exchange_weak instead. compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds, which allows the compiler to generate better assembly code when the compare and swap is used in a loop.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);

assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
assert_eq!(some_bool.load(Ordering::Relaxed), false);
1.10.0 · Source

pub fn compare_exchange( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>

Available on target_has_atomic=8 only.

Stores a value into the bool if the current value is the same as the current value.

The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal to current.

compare_exchange takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.compare_exchange(true,
                                      false,
                                      Ordering::Acquire,
                                      Ordering::Relaxed),
           Ok(true));
assert_eq!(some_bool.load(Ordering::Relaxed), false);

assert_eq!(some_bool.compare_exchange(true, true,
                                      Ordering::SeqCst,
                                      Ordering::Acquire),
           Err(false));
assert_eq!(some_bool.load(Ordering::Relaxed), false);
§Considerations

compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides of CAS operations. In particular, a load of the value followed by a successful compare_exchange with the previous load does not ensure that other threads have not changed the value in the interim. This is usually important when the equality check in the compare_exchange is being used to check the identity of a value, but equality does not necessarily imply identity. In this case, compare_exchange can lead to the ABA problem.

1.10.0 · Source

pub fn compare_exchange_weak( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>

Available on target_has_atomic=8 only.

Stores a value into the bool if the current value is the same as the current value.

Unlike AtomicBool::compare_exchange, this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.

compare_exchange_weak takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let val = AtomicBool::new(false);

let new = true;
let mut old = val.load(Ordering::Relaxed);
loop {
    match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
        Ok(_) => break,
        Err(x) => old = x,
    }
}
§Considerations

compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides of CAS operations. In particular, a load of the value followed by a successful compare_exchange with the previous load does not ensure that other threads have not changed the value in the interim. This is usually important when the equality check in the compare_exchange is being used to check the identity of a value, but equality does not necessarily imply identity. In this case, compare_exchange can lead to the ABA problem.

1.0.0 · Source

pub fn fetch_and(&self, val: bool, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Logical “and” with a boolean value.

Performs a logical “and” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_and takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);
1.0.0 · Source

pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Logical “nand” with a boolean value.

Performs a logical “nand” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_nand takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), true);
1.0.0 · Source

pub fn fetch_or(&self, val: bool, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Logical “or” with a boolean value.

Performs a logical “or” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_or takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);
1.0.0 · Source

pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Logical “xor” with a boolean value.

Performs a logical “xor” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_xor takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);
1.81.0 · Source

pub fn fetch_not(&self, order: Ordering) -> bool

Available on target_has_atomic=8 only.

Logical “not” with a boolean value.

Performs a logical “not” operation on the current value, and sets the new value to the result.

Returns the previous value.

fetch_not takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), true);
1.70.0 (const: 1.70.0) · Source

pub const fn as_ptr(&self) -> *mut bool

Returns a mutable pointer to the underlying bool.

Doing non-atomic reads and writes on the resulting boolean can be a data race. This method is mostly useful for FFI, where the function signature may use *mut bool instead of &AtomicBool.

Returning an *mut pointer from a shared reference to this atomic is safe because the atomic types work with interior mutability. All modifications of an atomic change the value through a shared reference, and can do so safely as long as they use atomic operations. Any use of the returned raw pointer requires an unsafe block and still has to uphold the requirements of the memory model.

§Examples
use std::sync::atomic::AtomicBool;

extern "C" {
    fn my_atomic_op(arg: *mut bool);
}

let mut atomic = AtomicBool::new(true);
unsafe {
    my_atomic_op(atomic.as_ptr());
}
1.53.0 · Source

pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<bool, bool>
where F: FnMut(bool) -> Option<bool>,

Available on target_has_atomic=8 only.

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

fetch_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicBool::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.

§Examples
use std::sync::atomic::{AtomicBool, Ordering};

let x = AtomicBool::new(false);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
assert_eq!(x.load(Ordering::SeqCst), false);
Source

pub fn try_update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(bool) -> Option<bool>, ) -> Result<bool, bool>

🔬This is a nightly-only experimental API. (atomic_try_update)
Available on target_has_atomic=8 only.

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

See also: update.

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

try_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicBool::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.

§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicBool, Ordering};

let x = AtomicBool::new(false);
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
assert_eq!(x.load(Ordering::SeqCst), false);
Source

pub fn update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(bool) -> bool, ) -> bool

🔬This is a nightly-only experimental API. (atomic_try_update)
Available on target_has_atomic=8 only.

Fetches the value, applies a function to it that it return a new value. The new value is stored and the old value is returned.

See also: try_update.

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, but the function will have been applied only once to the stored value.

update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicBool::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u8.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem.

§Examples
#![feature(atomic_try_update)]

use std::sync::atomic::{AtomicBool, Ordering};

let x = AtomicBool::new(false);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
assert_eq!(x.load(Ordering::SeqCst), false);

Trait Implementations§

Source§

impl AtomicConsume for AtomicBool

Available on non-crossbeam_no_atomic only.
Source§

type Val = bool

Type returned by load_consume.
Source§

fn load_consume(&self) -> <AtomicBool as AtomicConsume>::Val

Loads a value from the atomic using a “consume” memory ordering. Read more
1.3.0 · Source§

impl Debug for AtomicBool

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl Default for AtomicBool

Source§

fn default() -> AtomicBool

Creates an AtomicBool initialized to false.

Source§

impl<'de> Deserialize<'de> for AtomicBool

Available on no_target_has_atomic or target_has_atomic=8 only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<AtomicBool, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
1.24.0 (const: unstable) · Source§

impl From<bool> for AtomicBool

Source§

fn from(b: bool) -> AtomicBool

Converts a bool into an AtomicBool.

§Examples
use std::sync::atomic::AtomicBool;
let atomic_bool = AtomicBool::from(true);
assert_eq!(format!("{atomic_bool:?}"), "true")
Source§

impl FromArg for AtomicBool

Source§

type This<'from_arg> = AtomicBool

The type to convert into. Read more
Source§

fn from_arg(arg: Arg<'_>) -> Result<<AtomicBool as FromArg>::This<'_>, ArgError>

Creates an item from an argument. Read more
Source§

impl FromReflect for AtomicBool

Source§

fn from_reflect(reflect: &(dyn PartialReflect + 'static)) -> Option<AtomicBool>

Constructs a concrete instance of Self from a reflected value.
Source§

fn take_from_reflect( reflect: Box<dyn PartialReflect>, ) -> Result<Self, Box<dyn PartialReflect>>

Attempts to downcast the given value to Self using, constructing the value using from_reflect if that fails. Read more
Source§

impl FromZeros for AtomicBool

Source§

fn zero(&mut self)

Overwrites self with zeros. Read more
Source§

fn new_zeroed() -> Self
where Self: Sized,

Creates an instance of Self from zeroed bytes. Read more
Source§

impl GetOwnership for AtomicBool

Source§

fn ownership() -> Ownership

Returns the ownership of Self.
Source§

impl GetTypeRegistration for AtomicBool

Source§

fn get_type_registration() -> TypeRegistration

Returns the default TypeRegistration for this type.
Source§

fn register_type_dependencies(_registry: &mut TypeRegistry)

Registers other types needed by this type. Read more
Source§

impl IntoBytes for AtomicBool

Source§

fn as_bytes(&self) -> &[u8]
where Self: Immutable,

Gets the bytes of this value. Read more
Source§

fn as_mut_bytes(&mut self) -> &mut [u8]
where Self: FromBytes,

Gets the bytes of this value mutably. Read more
Source§

fn write_to(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>>
where Self: Immutable,

Writes a copy of self to dst. Read more
Source§

fn write_to_prefix( &self, dst: &mut [u8], ) -> Result<(), SizeError<&Self, &mut [u8]>>
where Self: Immutable,

Writes a copy of self to the prefix of dst. Read more
Source§

fn write_to_suffix( &self, dst: &mut [u8], ) -> Result<(), SizeError<&Self, &mut [u8]>>
where Self: Immutable,

Writes a copy of self to the suffix of dst. Read more
Source§

impl IntoReturn for AtomicBool

Source§

fn into_return<'into_return>(self) -> Return<'into_return>
where AtomicBool: 'into_return,

Converts Self into a Return value.
Source§

impl KnownLayout for AtomicBool

Source§

type PointerMetadata = ()

The type of metadata stored in a pointer to Self. Read more
Source§

fn size_for_metadata(meta: Self::PointerMetadata) -> Option<usize>

Computes the size of an object of type Self with the given pointer metadata. Read more
Source§

impl PartialReflect for AtomicBool

Source§

fn get_represented_type_info(&self) -> Option<&'static TypeInfo>

Returns the TypeInfo of the type represented by this value. Read more
Source§

fn into_partial_reflect(self: Box<AtomicBool>) -> Box<dyn PartialReflect>

Casts this type to a boxed, reflected value. Read more
Source§

fn as_partial_reflect(&self) -> &(dyn PartialReflect + 'static)

Casts this type to a reflected value. Read more
Source§

fn as_partial_reflect_mut(&mut self) -> &mut (dyn PartialReflect + 'static)

Casts this type to a mutable, reflected value. Read more
Source§

fn try_into_reflect( self: Box<AtomicBool>, ) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>

Attempts to cast this type to a boxed, fully-reflected value.
Source§

fn try_as_reflect(&self) -> Option<&(dyn Reflect + 'static)>

Attempts to cast this type to a fully-reflected value.
Source§

fn try_as_reflect_mut(&mut self) -> Option<&mut (dyn Reflect + 'static)>

Attempts to cast this type to a mutable, fully-reflected value.
Source§

fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>

Attempts to clone Self using reflection. Read more
Source§

fn try_apply( &mut self, value: &(dyn PartialReflect + 'static), ) -> Result<(), ApplyError>

Tries to apply a reflected value to this value. Read more
Source§

fn reflect_kind(&self) -> ReflectKind

Returns a zero-sized enumeration of “kinds” of type. Read more
Source§

fn reflect_ref(&self) -> ReflectRef<'_>

Returns an immutable enumeration of “kinds” of type. Read more
Source§

fn reflect_mut(&mut self) -> ReflectMut<'_>

Returns a mutable enumeration of “kinds” of type. Read more
Source§

fn reflect_owned(self: Box<AtomicBool>) -> ReflectOwned

Returns an owned enumeration of “kinds” of type. Read more
Source§

fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Debug formatter for the value. Read more
Source§

fn apply(&mut self, value: &(dyn PartialReflect + 'static))

Applies a reflected value to this value. Read more
Source§

fn to_dynamic(&self) -> Box<dyn PartialReflect>

Converts this reflected value into its dynamic representation based on its kind. Read more
Source§

fn reflect_clone_and_take<T>(&self) -> Result<T, ReflectCloneError>
where T: 'static, Self: Sized + TypePath,

For a type implementing PartialReflect, combines reflect_clone and take in a useful fashion, automatically constructing an appropriate ReflectCloneError if the downcast fails. Read more
Source§

fn reflect_hash(&self) -> Option<u64>

Returns a hash of the value (which includes the type). Read more
Source§

fn reflect_partial_eq( &self, _value: &(dyn PartialReflect + 'static), ) -> Option<bool>

Returns a “partial equality” comparison result. Read more
Source§

fn is_dynamic(&self) -> bool

Indicates whether or not this type is a dynamic type. Read more
Source§

impl Radium for AtomicBool

Source§

type Item = bool

Source§

fn new(value: bool) -> AtomicBool

Creates a new value of this type.
Source§

fn fence(order: Ordering)

If the underlying value is atomic, calls fence with the given Ordering. Otherwise, does nothing.
Source§

fn get_mut(&mut self) -> &mut bool

Returns a mutable reference to the underlying value. Read more
Source§

fn into_inner(self) -> bool

Consumes the wrapper and returns the contained value. Read more
Source§

fn load(&self, order: Ordering) -> bool

Load a value from this object. Read more
Source§

fn store(&self, value: bool, order: Ordering)

Store a value in this object. Read more
Source§

fn swap(&self, value: bool, order: Ordering) -> bool

Swap with the value stored in this object. Read more
Source§

fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool

👎Deprecated: Use compare_exchange or compare_exchange_weak instead
Stores a value into this object if the currently-stored value is the same as the current value. Read more
Source§

fn compare_exchange( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>

Stores a value into this object if the currently-stored value is the same as the current value. Read more
Source§

fn compare_exchange_weak( &self, current: bool, new: bool, success: Ordering, failure: Ordering, ) -> Result<bool, bool>

Stores a value into this object if the currently-stored value is the same as the current value. Read more
Source§

fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<bool, bool>
where F: FnMut(bool) -> Option<bool>,

Fetches the value, and applies a function to it that returns an optional new value. Read more
Source§

fn fetch_and(&self, value: bool, order: Ordering) -> bool

Performs a bitwise “and” on the currently-stored value and the argument value, and stores the result in self. Read more
Source§

fn fetch_nand(&self, value: bool, order: Ordering) -> bool

Performs a bitwise “nand” on the currently-stored value and the argument value, and stores the result in self. Read more
Source§

fn fetch_or(&self, value: bool, order: Ordering) -> bool

Performs a bitwise “or” on the currently-stored value and the argument value, and stores the result in self. Read more
Source§

fn fetch_xor(&self, value: bool, order: Ordering) -> bool

Performs a bitwise “xor” on the currently-stored value and the argument value, and stores the result in self. Read more
Source§

fn fetch_add(&self, value: Self::Item, order: Ordering) -> Self::Item
where Self::Item: NumericOps,

Adds value to the currently-stored value, wrapping on overflow, and stores the result in self. Read more
Source§

fn fetch_sub(&self, value: Self::Item, order: Ordering) -> Self::Item
where Self::Item: NumericOps,

Subtracts value from the currently-stored value, wrapping on underflow, and stores the result in self. Read more
Source§

impl Reflect for AtomicBool

Source§

fn into_any(self: Box<AtomicBool>) -> Box<dyn Any>

Returns the value as a Box<dyn Any>. Read more
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the value as a &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Returns the value as a &mut dyn Any. Read more
Source§

fn into_reflect(self: Box<AtomicBool>) -> Box<dyn Reflect>

Casts this type to a boxed, fully-reflected value.
Source§

fn as_reflect(&self) -> &(dyn Reflect + 'static)

Casts this type to a fully-reflected value.
Source§

fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)

Casts this type to a mutable, fully-reflected value.
Source§

fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>

Performs a type-checked assignment of a reflected value to this value. Read more
Source§

impl Serialize for AtomicBool

Available on no_target_has_atomic or target_has_atomic=8 only.
Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl TryFromBytes for AtomicBool

Source§

fn try_ref_from_bytes( source: &[u8], ) -> Result<&Self, ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout + Immutable,

Attempts to interpret the given source as a &Self. Read more
Source§

fn try_ref_from_prefix( source: &[u8], ) -> Result<(&Self, &[u8]), ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout + Immutable,

Attempts to interpret the prefix of the given source as a &Self. Read more
Source§

fn try_ref_from_suffix( source: &[u8], ) -> Result<(&[u8], &Self), ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout + Immutable,

Attempts to interpret the suffix of the given source as a &Self. Read more
Source§

fn try_mut_from_bytes( bytes: &mut [u8], ) -> Result<&mut Self, ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout + IntoBytes,

Attempts to interpret the given source as a &mut Self without copying. Read more
Source§

fn try_mut_from_prefix( source: &mut [u8], ) -> Result<(&mut Self, &mut [u8]), ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout + IntoBytes,

Attempts to interpret the prefix of the given source as a &mut Self. Read more
Source§

fn try_mut_from_suffix( source: &mut [u8], ) -> Result<(&mut [u8], &mut Self), ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout + IntoBytes,

Attempts to interpret the suffix of the given source as a &mut Self. Read more
Source§

fn try_ref_from_bytes_with_elems( source: &[u8], count: usize, ) -> Result<&Self, ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + Immutable,

Attempts to interpret the given source as a &Self with a DST length equal to count. Read more
Source§

fn try_ref_from_prefix_with_elems( source: &[u8], count: usize, ) -> Result<(&Self, &[u8]), ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + Immutable,

Attempts to interpret the prefix of the given source as a &Self with a DST length equal to count. Read more
Source§

fn try_ref_from_suffix_with_elems( source: &[u8], count: usize, ) -> Result<(&[u8], &Self), ConvertError<AlignmentError<&[u8], Self>, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + Immutable,

Attempts to interpret the suffix of the given source as a &Self with a DST length equal to count. Read more
Source§

fn try_mut_from_bytes_with_elems( source: &mut [u8], count: usize, ) -> Result<&mut Self, ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + IntoBytes,

Attempts to interpret the given source as a &mut Self with a DST length equal to count. Read more
Source§

fn try_mut_from_prefix_with_elems( source: &mut [u8], count: usize, ) -> Result<(&mut Self, &mut [u8]), ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + IntoBytes,

Attempts to interpret the prefix of the given source as a &mut Self with a DST length equal to count. Read more
Source§

fn try_mut_from_suffix_with_elems( source: &mut [u8], count: usize, ) -> Result<(&mut [u8], &mut Self), ConvertError<AlignmentError<&mut [u8], Self>, SizeError<&mut [u8], Self>, ValidityError<&mut [u8], Self>>>
where Self: KnownLayout<PointerMetadata = usize> + IntoBytes,

Attempts to interpret the suffix of the given source as a &mut Self with a DST length equal to count. Read more
Source§

fn try_read_from_bytes( source: &[u8], ) -> Result<Self, ConvertError<Infallible, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: Sized,

Attempts to read the given source as a Self. Read more
Source§

fn try_read_from_prefix( source: &[u8], ) -> Result<(Self, &[u8]), ConvertError<Infallible, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: Sized,

Attempts to read a Self from the prefix of the given source. Read more
Source§

fn try_read_from_suffix( source: &[u8], ) -> Result<(&[u8], Self), ConvertError<Infallible, SizeError<&[u8], Self>, ValidityError<&[u8], Self>>>
where Self: Sized,

Attempts to read a Self from the suffix of the given source. Read more
Source§

impl Type for AtomicBool

Available on target_has_atomic=8 only.
Source§

const SIGNATURE: &'static Signature = <bool as Type>::SIGNATURE

The signature for the implementing type, in parsed format. Read more
Source§

impl TypePath for AtomicBool

Source§

fn type_path() -> &'static str

Returns the fully qualified path of the underlying type. Read more
Source§

fn short_type_path() -> &'static str

Returns a short, pretty-print enabled path to the type. Read more
Source§

fn type_ident() -> Option<&'static str>

Returns the name of the type, or None if it is anonymous. Read more
Source§

fn crate_name() -> Option<&'static str>

Returns the name of the crate the type is in, or None if it is anonymous. Read more
Source§

fn module_path() -> Option<&'static str>

Returns the path to the module the type is in, or None if it is anonymous. Read more
Source§

impl Typed for AtomicBool

Source§

fn type_info() -> &'static TypeInfo

Returns the compile-time info for the underlying type.
1.14.0 · Source§

impl RefUnwindSafe for AtomicBool

1.0.0 · Source§

impl Sync for AtomicBool

Source§

impl Unaligned for AtomicBool

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<'de, T> DynamicDeserialize<'de> for T
where T: Type + Deserialize<'de>,

Source§

type Deserializer = PhantomData<T>

A DeserializeSeed implementation for this type.
Source§

fn deserializer_for_signature( signature: &Signature, ) -> Result<<T as DynamicDeserialize<'de>>::Deserializer, Error>

Get a deserializer compatible with this parsed signature.
Source§

impl<T> DynamicType for T
where T: Type + ?Sized,

Source§

fn signature(&self) -> Signature

The type signature for self. Read more
Source§

impl<T> DynamicTypePath for T
where T: TypePath,

Source§

impl<T> DynamicTyped for T
where T: Typed,

Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> FromWorld for T
where T: Default,

Source§

fn from_world(_world: &mut World) -> T

Creates Self using default().

Source§

impl<T> GetPath for T
where T: Reflect + ?Sized,

Source§

fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a reference to the value specified by path. Read more
Source§

fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a mutable reference to the value specified by path. Read more
Source§

fn path<'p, T>( &self, path: impl ReflectPath<'p>, ) -> Result<&T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed reference to the value specified by path. Read more
Source§

fn path_mut<'p, T>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed mutable reference to the value specified by path. Read more
Source§

impl<T, W> HasTypeWitness<W> for T
where W: MakeTypeWitness<Arg = T>, T: ?Sized,

Source§

const WITNESS: W = W::MAKE

A constant of the type witness
Source§

impl<T> Identity for T
where T: ?Sized,

Source§

const TYPE_EQ: TypeEq<T, <T as Identity>::Type> = TypeEq::NEW

Proof that Self is the same type as Self::Type, provides methods for casting between Self and Self::Type.
Source§

type Type = T

The same type as Self, used to emulate type equality bounds (T == U) with associated type equality constraints (T: Identity<Type = U>).
Source§

impl<T> InitializeFromFunction<T> for T

Source§

fn initialize_from_function(f: fn() -> T) -> T

Create an instance of this type from an initialization function
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> IntoResult<T> for T

Source§

fn into_result(self) -> Result<T, RunSystemError>

Converts this type into the system output type.
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<A> Is for A
where A: Any,

Source§

fn is<T>() -> bool
where T: Any,

Checks if the current type “is” another type, using a TypeId equality comparison. This is most useful in the context of generic logic. Read more
Source§

impl<T> NoneValue for T
where T: Default,

Source§

type NoneType = T

Source§

fn null_value() -> T

The none-equivalent value.
Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

Source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
Source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
Source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> Serialize for T
where T: Serialize + ?Sized,

Source§

fn erased_serialize(&self, serializer: &mut dyn Serializer) -> Result<(), Error>

Source§

fn do_erased_serialize( &self, serializer: &mut dyn Serializer, ) -> Result<(), ErrorImpl>

Source§

impl<Ret> SpawnIfAsync<(), Ret> for Ret

Source§

fn spawn(self) -> Ret

Spawn the value into the dioxus runtime if it is an async block
Source§

impl<T, O> SuperFrom<T> for O
where O: From<T>,

Source§

fn super_from(input: T) -> O

Convert from a type to another type.
Source§

impl<T, O, M> SuperInto<O, M> for T
where O: SuperFrom<T, M>,

Source§

fn super_into(self) -> O

Convert from a type to another type.
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> Reflectable for T

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,