custom_skinned_mesh/custom_skinned_mesh.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
//! Skinned mesh example with mesh and joints data defined in code.
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
use std::f32::consts::*;
use bevy::{
math::ops,
prelude::*,
render::{
mesh::{
skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
Indices, PrimitiveTopology, VertexAttributeValues,
},
render_asset::RenderAssetUsages,
},
};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight {
brightness: 3000.0,
..default()
})
.add_systems(Startup, setup)
.add_systems(Update, joint_animation)
.run();
}
/// Used to mark a joint to be animated in the [`joint_animation`] system.
#[derive(Component)]
struct AnimatedJoint(isize);
/// Construct a mesh and a skeleton with 2 joints for that mesh,
/// and mark the second joint to be animated.
/// It is similar to the scene defined in `models/SimpleSkin/SimpleSkin.gltf`
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut skinned_mesh_inverse_bindposes_assets: ResMut<Assets<SkinnedMeshInverseBindposes>>,
) {
// Create a camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(2.5, 2.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
));
// Create inverse bindpose matrices for a skeleton consists of 2 joints
let inverse_bindposes = skinned_mesh_inverse_bindposes_assets.add(vec![
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
]);
// Create a mesh
let mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::RENDER_WORLD,
)
// Set mesh vertex positions
.with_inserted_attribute(
Mesh::ATTRIBUTE_POSITION,
vec![
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.5, 0.0],
[1.0, 0.5, 0.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.5, 0.0],
[1.0, 1.5, 0.0],
[0.0, 2.0, 0.0],
[1.0, 2.0, 0.0],
],
)
// Add UV coordinates that map the left half of the texture since its a 1 x
// 2 rectangle.
.with_inserted_attribute(
Mesh::ATTRIBUTE_UV_0,
vec![
[0.0, 0.00],
[0.5, 0.00],
[0.0, 0.25],
[0.5, 0.25],
[0.0, 0.50],
[0.5, 0.50],
[0.0, 0.75],
[0.5, 0.75],
[0.0, 1.00],
[0.5, 1.00],
],
)
// Set mesh vertex normals
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vec![[0.0, 0.0, 1.0]; 10])
// Set mesh vertex joint indices for mesh skinning.
// Each vertex gets 4 indices used to address the `JointTransforms` array in the vertex shader
// as well as `SkinnedMeshJoint` array in the `SkinnedMesh` component.
// This means that a maximum of 4 joints can affect a single vertex.
.with_inserted_attribute(
Mesh::ATTRIBUTE_JOINT_INDEX,
// Need to be explicit here as [u16; 4] could be either Uint16x4 or Unorm16x4.
VertexAttributeValues::Uint16x4(vec![
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
]),
)
// Set mesh vertex joint weights for mesh skinning.
// Each vertex gets 4 joint weights corresponding to the 4 joint indices assigned to it.
// The sum of these weights should equal to 1.
.with_inserted_attribute(
Mesh::ATTRIBUTE_JOINT_WEIGHT,
vec![
[1.00, 0.00, 0.0, 0.0],
[1.00, 0.00, 0.0, 0.0],
[0.75, 0.25, 0.0, 0.0],
[0.75, 0.25, 0.0, 0.0],
[0.50, 0.50, 0.0, 0.0],
[0.50, 0.50, 0.0, 0.0],
[0.25, 0.75, 0.0, 0.0],
[0.25, 0.75, 0.0, 0.0],
[0.00, 1.00, 0.0, 0.0],
[0.00, 1.00, 0.0, 0.0],
],
)
// Tell bevy to construct triangles from a list of vertex indices,
// where each 3 vertex indices form an triangle.
.with_inserted_indices(Indices::U16(vec![
0, 1, 3, 0, 3, 2, 2, 3, 5, 2, 5, 4, 4, 5, 7, 4, 7, 6, 6, 7, 9, 6, 9, 8,
]));
let mesh = meshes.add(mesh);
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(42);
for i in -5..5 {
// Create joint entities
let joint_0 = commands
.spawn(Transform::from_xyz(
i as f32 * 1.5,
0.0,
// Move quads back a small amount to avoid Z-fighting and not
// obscure the transform gizmos.
-(i as f32 * 0.01).abs(),
))
.id();
let joint_1 = commands.spawn((AnimatedJoint(i), Transform::IDENTITY)).id();
// Set joint_1 as a child of joint_0.
commands.entity(joint_0).add_children(&[joint_1]);
// Each joint in this vector corresponds to each inverse bindpose matrix in `SkinnedMeshInverseBindposes`.
let joint_entities = vec![joint_0, joint_1];
// Create skinned mesh renderer. Note that its transform doesn't affect the position of the mesh.
commands.spawn((
Mesh3d(mesh.clone()),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::srgb(
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
),
base_color_texture: Some(asset_server.load("textures/uv_checker_bw.png")),
..default()
})),
SkinnedMesh {
inverse_bindposes: inverse_bindposes.clone(),
joints: joint_entities,
},
));
}
}
/// Animate the joint marked with [`AnimatedJoint`] component.
fn joint_animation(
time: Res<Time>,
mut query: Query<(&mut Transform, &AnimatedJoint)>,
mut gizmos: Gizmos,
) {
for (mut transform, animated_joint) in &mut query {
match animated_joint.0 {
-5 => {
transform.rotation =
Quat::from_rotation_x(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-4 => {
transform.rotation =
Quat::from_rotation_y(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-3 => {
transform.rotation =
Quat::from_rotation_z(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-2 => {
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
}
-1 => {
transform.scale.y = ops::sin(time.elapsed_secs()) + 1.0;
}
0 => {
transform.translation.x = 0.5 * ops::sin(time.elapsed_secs());
transform.translation.y = ops::cos(time.elapsed_secs());
}
1 => {
transform.translation.y = ops::sin(time.elapsed_secs());
transform.translation.z = ops::cos(time.elapsed_secs());
}
2 => {
transform.translation.x = ops::sin(time.elapsed_secs());
}
3 => {
transform.translation.y = ops::sin(time.elapsed_secs());
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
}
_ => (),
}
// Show transform
let mut axis = *transform;
axis.translation.x += animated_joint.0 as f32 * 1.5;
gizmos.axes(axis, 1.0);
}
}