Struct bevy::render::mesh::SphereMeshBuilder
source · pub struct SphereMeshBuilder {
pub sphere: Sphere,
pub kind: SphereKind,
}Fields§
§sphere: SphereThe Sphere shape.
kind: SphereKindThe type of sphere mesh that will be built.
Implementations§
source§impl SphereMeshBuilder
impl SphereMeshBuilder
sourcepub const fn new(radius: f32, kind: SphereKind) -> SphereMeshBuilder
pub const fn new(radius: f32, kind: SphereKind) -> SphereMeshBuilder
Creates a new SphereMeshBuilder from a radius and SphereKind.
sourcepub const fn kind(self, kind: SphereKind) -> SphereMeshBuilder
pub const fn kind(self, kind: SphereKind) -> SphereMeshBuilder
Sets the SphereKind that will be used for building the mesh.
Examples found in repository?
examples/math/random_sampling.rs (line 105)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Use seeded rng and store it in a resource; this makes the random output reproducible.
let seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
commands.insert_resource(RandomSource(seeded_rng));
// Make a plane for establishing space.
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(12.0, 12.0)),
material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
transform: Transform::from_xyz(0.0, -2.5, 0.0),
..default()
});
// Store the shape we sample from in a resource:
let shape = Cuboid::from_length(2.9);
commands.insert_resource(SampledShape(shape));
// The sampled shape shown transparently:
commands.spawn(PbrBundle {
mesh: meshes.add(shape),
material: materials.add(StandardMaterial {
base_color: Color::srgba(0.2, 0.1, 0.6, 0.3),
alpha_mode: AlphaMode::Blend,
cull_mode: None,
..default()
}),
..default()
});
// A light:
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
// A camera:
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// Store the mesh and material for sample points in resources:
commands.insert_resource(PointMesh(
meshes.add(
Sphere::new(0.03)
.mesh()
.kind(SphereKind::Ico { subdivisions: 3 }),
),
));
commands.insert_resource(PointMaterial(materials.add(StandardMaterial {
base_color: Color::srgb(1.0, 0.8, 0.8),
metallic: 0.8,
..default()
})));
// Instructions for the example:
commands.spawn(
TextBundle::from_section(
"Controls:\n\
M: Toggle between sampling boundary and interior.\n\
R: Restart (erase all samples).\n\
S: Add one random sample.\n\
D: Add 100 random samples.\n\
Rotate camera by panning left/right.",
TextStyle::default(),
)
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
// The mode starts with interior points.
commands.insert_resource(Mode::Interior);
// Starting mouse-pressed state is false.
commands.insert_resource(MousePressed(false));
}sourcepub fn ico(&self, subdivisions: usize) -> Result<Mesh, IcosphereError>
pub fn ico(&self, subdivisions: usize) -> Result<Mesh, IcosphereError>
Creates an icosphere mesh with the given number of subdivisions.
The number of faces quadruples with each subdivision.
If there are 80 or more subdivisions, the vertex count will be too large,
and an IcosphereError is returned.
A good default is 5 subdivisions.
Examples found in repository?
examples/3d/reflection_probes.rs (line 125)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
fn spawn_sphere(
commands: &mut Commands,
meshes: &mut Assets<Mesh>,
materials: &mut Assets<StandardMaterial>,
) {
// Create a sphere mesh.
let sphere_mesh = meshes.add(Sphere::new(1.0).mesh().ico(7).unwrap());
// Create a sphere.
commands.spawn(PbrBundle {
mesh: sphere_mesh.clone(),
material: materials.add(StandardMaterial {
base_color: Srgba::hex("#ffd891").unwrap().into(),
metallic: 1.0,
perceptual_roughness: 0.0,
..StandardMaterial::default()
}),
transform: Transform::default(),
..PbrBundle::default()
});
}More examples
examples/transforms/transform.rs (line 49)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Add an object (sphere) for visualizing scaling.
commands.spawn((
PbrBundle {
mesh: meshes.add(Sphere::new(3.0).mesh().ico(32).unwrap()),
material: materials.add(Color::from(YELLOW)),
transform: Transform::from_translation(Vec3::ZERO),
..default()
},
Center {
max_size: 1.0,
min_size: 0.1,
scale_factor: 0.05,
},
));
// Add the cube to visualize rotation and translation.
// This cube will circle around the center_sphere
// by changing its rotation each frame and moving forward.
// Define a start transform for an orbiting cube, that's away from our central object (sphere)
// and rotate it so it will be able to move around the sphere and not towards it.
let cube_spawn =
Transform::from_translation(Vec3::Z * -10.0).with_rotation(Quat::from_rotation_y(PI / 2.));
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::default()),
material: materials.add(Color::WHITE),
transform: cube_spawn,
..default()
},
CubeState {
start_pos: cube_spawn.translation,
move_speed: 2.0,
turn_speed: 0.2,
},
));
// Spawn a camera looking at the entities to show what's happening in this example.
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 10.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// Add a light source for better 3d visibility.
commands.spawn(DirectionalLightBundle {
transform: Transform::from_xyz(3.0, 3.0, 3.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}examples/stress_tests/many_lights.rs (line 57)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
warn!(include_str!("warning_string.txt"));
const LIGHT_RADIUS: f32 = 0.3;
const LIGHT_INTENSITY: f32 = 1000.0;
const RADIUS: f32 = 50.0;
const N_LIGHTS: usize = 100_000;
commands.spawn(PbrBundle {
mesh: meshes.add(Sphere::new(RADIUS).mesh().ico(9).unwrap()),
material: materials.add(Color::WHITE),
transform: Transform::from_scale(Vec3::NEG_ONE),
..default()
});
let mesh = meshes.add(Cuboid::default());
let material = materials.add(StandardMaterial {
base_color: DEEP_PINK.into(),
..default()
});
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
// Spawn N_LIGHTS many lights
commands.spawn_batch((0..N_LIGHTS).map(move |i| {
let mut rng = thread_rng();
let spherical_polar_theta_phi = fibonacci_spiral_on_sphere(golden_ratio, i, N_LIGHTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
PointLightBundle {
point_light: PointLight {
range: LIGHT_RADIUS,
intensity: LIGHT_INTENSITY,
color: Color::hsl(rng.gen_range(0.0..360.0), 1.0, 0.5),
..default()
},
transform: Transform::from_translation((RADIUS as f64 * unit_sphere_p).as_vec3()),
..default()
}
}));
// camera
match std::env::args().nth(1).as_deref() {
Some("orthographic") => commands.spawn(Camera3dBundle {
projection: OrthographicProjection {
scale: 20.0,
scaling_mode: ScalingMode::FixedHorizontal(1.0),
..default()
}
.into(),
..default()
}),
_ => commands.spawn(Camera3dBundle::default()),
};
// add one cube, the only one with strong handles
// also serves as a reference point during rotation
commands.spawn(PbrBundle {
mesh,
material,
transform: Transform {
translation: Vec3::new(0.0, RADIUS, 0.0),
scale: Vec3::splat(5.0),
..default()
},
..default()
});
}examples/3d/bloom_3d.rs (line 60)
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
fn setup_scene(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn((
Camera3dBundle {
camera: Camera {
hdr: true, // 1. HDR is required for bloom
..default()
},
tonemapping: Tonemapping::TonyMcMapface, // 2. Using a tonemapper that desaturates to white is recommended
transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
// 3. Enable bloom for the camera
BloomSettings::NATURAL,
));
let material_emissive1 = materials.add(StandardMaterial {
emissive: LinearRgba::rgb(13.99, 5.32, 2.0), // 4. Put something bright in a dark environment to see the effect
..default()
});
let material_emissive2 = materials.add(StandardMaterial {
emissive: LinearRgba::rgb(2.0, 13.99, 5.32),
..default()
});
let material_emissive3 = materials.add(StandardMaterial {
emissive: LinearRgba::rgb(5.32, 2.0, 13.99),
..default()
});
let material_non_emissive = materials.add(StandardMaterial {
base_color: GRAY.into(),
..default()
});
let mesh = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
for x in -5..5 {
for z in -5..5 {
// This generates a pseudo-random integer between `[0, 6)`, but deterministically so
// the same spheres are always the same colors.
let mut hasher = DefaultHasher::new();
(x, z).hash(&mut hasher);
let rand = (hasher.finish() - 2) % 6;
let material = match rand {
0 => material_emissive1.clone(),
1 => material_emissive2.clone(),
2 => material_emissive3.clone(),
3..=5 => material_non_emissive.clone(),
_ => unreachable!(),
};
commands.spawn((
PbrBundle {
mesh: mesh.clone(),
material,
transform: Transform::from_xyz(x as f32 * 2.0, 0.0, z as f32 * 2.0),
..default()
},
Bouncing,
));
}
}
// example instructions
commands.spawn(
TextBundle::from_section("", TextStyle::default()).with_style(Style {
position_type: PositionType::Absolute,
bottom: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}examples/ecs/iter_combinations.rs (line 43)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
fn generate_bodies(
time: Res<Time<Fixed>>,
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let mesh = meshes.add(Sphere::new(1.0).mesh().ico(3).unwrap());
let color_range = 0.5..1.0;
let vel_range = -0.5..0.5;
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
for _ in 0..NUM_BODIES {
let radius: f32 = rng.gen_range(0.1..0.7);
let mass_value = radius.powi(3) * 10.;
let position = Vec3::new(
rng.gen_range(-1.0..1.0),
rng.gen_range(-1.0..1.0),
rng.gen_range(-1.0..1.0),
)
.normalize()
* rng.gen_range(0.2f32..1.0).cbrt()
* 15.;
commands.spawn(BodyBundle {
pbr: PbrBundle {
transform: Transform {
translation: position,
scale: Vec3::splat(radius),
..default()
},
mesh: mesh.clone(),
material: materials.add(Color::srgb(
rng.gen_range(color_range.clone()),
rng.gen_range(color_range.clone()),
rng.gen_range(color_range.clone()),
)),
..default()
},
mass: Mass(mass_value),
acceleration: Acceleration(Vec3::ZERO),
last_pos: LastPos(
position
- Vec3::new(
rng.gen_range(vel_range.clone()),
rng.gen_range(vel_range.clone()),
rng.gen_range(vel_range.clone()),
) * time.timestep().as_secs_f32(),
),
});
}
// add bigger "star" body in the center
let star_radius = 1.;
commands
.spawn((
BodyBundle {
pbr: PbrBundle {
transform: Transform::from_scale(Vec3::splat(star_radius)),
mesh: meshes.add(Sphere::new(1.0).mesh().ico(5).unwrap()),
material: materials.add(StandardMaterial {
base_color: ORANGE_RED.into(),
emissive: LinearRgba::from(ORANGE_RED) * 2.,
..default()
}),
..default()
},
mass: Mass(500.0),
..default()
},
Star,
))
.with_children(|p| {
p.spawn(PointLightBundle {
point_light: PointLight {
color: Color::WHITE,
range: 100.0,
radius: star_radius,
..default()
},
..default()
});
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 10.5, -30.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}examples/3d/transparency_3d.rs (line 30)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Opaque plane, uses `alpha_mode: Opaque` by default
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(6.0, 6.0)),
material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
..default()
});
// Transparent sphere, uses `alpha_mode: Mask(f32)`
commands.spawn(PbrBundle {
mesh: meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap()),
material: materials.add(StandardMaterial {
// Alpha channel of the color controls transparency.
// We set it to 0.0 here, because it will be changed over time in the
// `fade_transparency` function.
// Note that the transparency has no effect on the objects shadow.
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
// Mask sets a cutoff for transparency. Alpha values below are fully transparent,
// alpha values above are fully opaque.
alpha_mode: AlphaMode::Mask(0.5),
..default()
}),
transform: Transform::from_xyz(1.0, 0.5, -1.5),
..default()
});
// Transparent unlit sphere, uses `alpha_mode: Mask(f32)`
commands.spawn(PbrBundle {
mesh: meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap()),
material: materials.add(StandardMaterial {
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
alpha_mode: AlphaMode::Mask(0.5),
unlit: true,
..default()
}),
transform: Transform::from_xyz(-1.0, 0.5, -1.5),
..default()
});
// Transparent cube, uses `alpha_mode: Blend`
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::default()),
// Notice how there is no need to set the `alpha_mode` explicitly here.
// When converting a color to a material using `into()`, the alpha mode is
// automatically set to `Blend` if the alpha channel is anything lower than 1.0.
material: materials.add(Color::srgba(0.5, 0.5, 1.0, 0.0)),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
});
// Transparent cube, uses `alpha_mode: AlphaToCoverage`
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::default()),
material: materials.add(StandardMaterial {
base_color: Color::srgba(0.5, 1.0, 0.5, 0.0),
alpha_mode: AlphaMode::AlphaToCoverage,
..default()
}),
transform: Transform::from_xyz(-1.5, 0.5, 0.0),
..default()
});
// Opaque sphere
commands.spawn(PbrBundle {
mesh: meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap()),
material: materials.add(Color::srgb(0.7, 0.2, 0.1)),
transform: Transform::from_xyz(0.0, 0.5, -1.5),
..default()
});
// Light
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
// Camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}Additional examples can be found in:
sourcepub fn uv(&self, sectors: usize, stacks: usize) -> Mesh
pub fn uv(&self, sectors: usize, stacks: usize) -> Mesh
Creates a UV sphere Mesh with the given number of
longitudinal sectors and latitudinal stacks, aka horizontal and vertical resolution.
A good default is 32 sectors and 18 stacks.
Examples found in repository?
examples/3d/irradiance_volumes.rs (line 512)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
fn from_world(world: &mut World) -> Self {
let fox_animation =
world.load_asset(GltfAssetLabel::Animation(1).from_asset("models/animated/Fox.glb"));
let (fox_animation_graph, fox_animation_node) =
AnimationGraph::from_clip(fox_animation.clone());
ExampleAssets {
main_sphere: world.add_asset(Sphere::default().mesh().uv(32, 18)),
fox: world.load_asset(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
main_sphere_material: world.add_asset(Color::from(SILVER)),
main_scene: world.load_asset(
GltfAssetLabel::Scene(0)
.from_asset("models/IrradianceVolumeExample/IrradianceVolumeExample.glb"),
),
irradiance_volume: world.load_asset("irradiance_volumes/Example.vxgi.ktx2"),
fox_animation_graph: world.add_asset(fox_animation_graph),
fox_animation_node,
voxel_cube: world.add_asset(Cuboid::default()),
// Just use a specular map for the skybox since it's not too blurry.
// In reality you wouldn't do this--you'd use a real skybox texture--but
// reusing the textures like this saves space in the Bevy repository.
skybox: world.load_asset("environment_maps/pisa_specular_rgb9e5_zstd.ktx2"),
}
}More examples
examples/3d/spherical_area_lights.rs (line 43)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.2, 1.5, 2.5).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// plane
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
material: materials.add(StandardMaterial {
base_color: Color::srgb(0.2, 0.2, 0.2),
perceptual_roughness: 0.08,
..default()
}),
..default()
});
const COUNT: usize = 6;
let position_range = -2.0..2.0;
let radius_range = 0.0..0.4;
let pos_len = position_range.end - position_range.start;
let radius_len = radius_range.end - radius_range.start;
let mesh = meshes.add(Sphere::new(1.0).mesh().uv(120, 64));
for i in 0..COUNT {
let percent = i as f32 / COUNT as f32;
let radius = radius_range.start + percent * radius_len;
// sphere light
commands
.spawn(PbrBundle {
mesh: mesh.clone(),
material: materials.add(StandardMaterial {
base_color: Color::srgb(0.5, 0.5, 1.0),
unlit: true,
..default()
}),
transform: Transform::from_xyz(position_range.start + percent * pos_len, 0.3, 0.0)
.with_scale(Vec3::splat(radius)),
..default()
})
.with_children(|children| {
children.spawn(PointLightBundle {
point_light: PointLight {
radius,
color: Color::srgb(0.2, 0.2, 1.0),
..default()
},
..default()
});
});
}
}examples/audio/spatial_audio_3d.rs (line 28)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Space between the two ears
let gap = 4.0;
// sound emitter
commands.spawn((
PbrBundle {
mesh: meshes.add(Sphere::new(0.2).mesh().uv(32, 18)),
material: materials.add(Color::from(BLUE)),
transform: Transform::from_xyz(0.0, 0.0, 0.0),
..default()
},
Emitter::default(),
AudioBundle {
source: asset_server.load("sounds/Windless Slopes.ogg"),
settings: PlaybackSettings::LOOP.with_spatial(true),
},
));
let listener = SpatialListener::new(gap);
commands
.spawn((SpatialBundle::default(), listener.clone()))
.with_children(|parent| {
// left ear indicator
parent.spawn(PbrBundle {
mesh: meshes.add(Cuboid::new(0.2, 0.2, 0.2)),
material: materials.add(Color::from(RED)),
transform: Transform::from_translation(listener.left_ear_offset),
..default()
});
// right ear indicator
parent.spawn(PbrBundle {
mesh: meshes.add(Cuboid::new(0.2, 0.2, 0.2)),
material: materials.add(Color::from(LIME)),
transform: Transform::from_translation(listener.right_ear_offset),
..default()
});
});
// light
commands.spawn(DirectionalLightBundle {
transform: Transform::from_xyz(4.0, 8.0, 4.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// example instructions
commands.spawn(
TextBundle::from_section(
"Up/Down/Left/Right: Move Listener\nSpace: Toggle Emitter Movement",
TextStyle::default(),
)
.with_style(Style {
position_type: PositionType::Absolute,
bottom: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
// camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 5.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}examples/3d/ssao.rs (line 69)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands
.spawn(Camera3dBundle {
camera: Camera {
hdr: true,
..default()
},
transform: Transform::from_xyz(-2.0, 2.0, -2.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
})
.insert(ScreenSpaceAmbientOcclusionBundle::default())
.insert(TemporalAntiAliasBundle::default());
let material = materials.add(StandardMaterial {
base_color: Color::srgb(0.5, 0.5, 0.5),
perceptual_roughness: 1.0,
reflectance: 0.0,
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::default()),
material: material.clone(),
transform: Transform::from_xyz(0.0, 0.0, 1.0),
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::default()),
material: material.clone(),
transform: Transform::from_xyz(0.0, -1.0, 0.0),
..default()
});
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::default()),
material,
transform: Transform::from_xyz(1.0, 0.0, 0.0),
..default()
});
commands.spawn((
PbrBundle {
mesh: meshes.add(Sphere::new(0.4).mesh().uv(72, 36)),
material: materials.add(StandardMaterial {
base_color: Color::srgb(0.4, 0.4, 0.4),
perceptual_roughness: 1.0,
reflectance: 0.0,
..default()
}),
..default()
},
SphereMarker,
));
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_rotation(Quat::from_euler(
EulerRot::ZYX,
0.0,
PI * -0.15,
PI * -0.15,
)),
..default()
});
commands.spawn(
TextBundle::from_section("", TextStyle::default()).with_style(Style {
position_type: PositionType::Absolute,
bottom: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}examples/3d/3d_shapes.rs (line 67)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut images: ResMut<Assets<Image>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
let debug_material = materials.add(StandardMaterial {
base_color_texture: Some(images.add(uv_debug_texture())),
..default()
});
let shapes = [
meshes.add(Cuboid::default()),
meshes.add(Tetrahedron::default()),
meshes.add(Capsule3d::default()),
meshes.add(Torus::default()),
meshes.add(Cylinder::default()),
meshes.add(Cone::default()),
meshes.add(ConicalFrustum::default()),
meshes.add(Sphere::default().mesh().ico(5).unwrap()),
meshes.add(Sphere::default().mesh().uv(32, 18)),
];
let extrusions = [
meshes.add(Extrusion::new(Rectangle::default(), 1.)),
meshes.add(Extrusion::new(Capsule2d::default(), 1.)),
meshes.add(Extrusion::new(Annulus::default(), 1.)),
meshes.add(Extrusion::new(Circle::default(), 1.)),
meshes.add(Extrusion::new(Ellipse::default(), 1.)),
meshes.add(Extrusion::new(RegularPolygon::default(), 1.)),
meshes.add(Extrusion::new(Triangle2d::default(), 1.)),
];
let num_shapes = shapes.len();
for (i, shape) in shapes.into_iter().enumerate() {
commands.spawn((
PbrBundle {
mesh: shape,
material: debug_material.clone(),
transform: Transform::from_xyz(
-SHAPES_X_EXTENT / 2. + i as f32 / (num_shapes - 1) as f32 * SHAPES_X_EXTENT,
2.0,
Z_EXTENT / 2.,
)
.with_rotation(Quat::from_rotation_x(-PI / 4.)),
..default()
},
Shape,
));
}
let num_extrusions = extrusions.len();
for (i, shape) in extrusions.into_iter().enumerate() {
commands.spawn((
PbrBundle {
mesh: shape,
material: debug_material.clone(),
transform: Transform::from_xyz(
-EXTRUSION_X_EXTENT / 2.
+ i as f32 / (num_extrusions - 1) as f32 * EXTRUSION_X_EXTENT,
2.0,
-Z_EXTENT / 2.,
)
.with_rotation(Quat::from_rotation_x(-PI / 4.)),
..default()
},
Shape,
));
}
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
intensity: 10_000_000.,
range: 100.0,
shadow_depth_bias: 0.2,
..default()
},
transform: Transform::from_xyz(8.0, 16.0, 8.0),
..default()
});
// ground plane
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(50.0, 50.0).subdivisions(10)),
material: materials.add(Color::from(SILVER)),
..default()
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 7., 14.0).looking_at(Vec3::new(0., 1., 0.), Vec3::Y),
..default()
});
#[cfg(not(target_arch = "wasm32"))]
commands.spawn(
TextBundle::from_section("Press space to toggle wireframes", TextStyle::default())
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}examples/3d/spotlight.rs (line 78)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// ground plane
commands.spawn((
PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
material: materials.add(Color::WHITE),
..default()
},
Movable,
));
// cubes
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
let cube_mesh = meshes.add(Cuboid::new(0.5, 0.5, 0.5));
let blue = materials.add(Color::srgb_u8(124, 144, 255));
commands.spawn_batch(
std::iter::repeat_with(move || {
let x = rng.gen_range(-5.0..5.0);
let y = rng.gen_range(0.0..3.0);
let z = rng.gen_range(-5.0..5.0);
(
PbrBundle {
mesh: cube_mesh.clone(),
material: blue.clone(),
transform: Transform::from_xyz(x, y, z),
..default()
},
Movable,
)
})
.take(40),
);
let sphere_mesh = meshes.add(Sphere::new(0.05).mesh().uv(32, 18));
let sphere_mesh_direction = meshes.add(Sphere::new(0.1).mesh().uv(32, 18));
let red_emissive = materials.add(StandardMaterial {
base_color: RED.into(),
emissive: LinearRgba::new(1.0, 0.0, 0.0, 0.0),
..default()
});
let maroon_emissive = materials.add(StandardMaterial {
base_color: MAROON.into(),
emissive: LinearRgba::new(0.369, 0.0, 0.0, 0.0),
..default()
});
for x in 0..4 {
for z in 0..4 {
let x = x as f32 - 2.0;
let z = z as f32 - 2.0;
// red spot_light
commands
.spawn(SpotLightBundle {
transform: Transform::from_xyz(1.0 + x, 2.0, z)
.looking_at(Vec3::new(1.0 + x, 0.0, z), Vec3::X),
spot_light: SpotLight {
intensity: 40_000.0, // lumens
color: Color::WHITE,
shadows_enabled: true,
inner_angle: PI / 4.0 * 0.85,
outer_angle: PI / 4.0,
..default()
},
..default()
})
.with_children(|builder| {
builder.spawn(PbrBundle {
mesh: sphere_mesh.clone(),
material: red_emissive.clone(),
..default()
});
builder.spawn((
PbrBundle {
transform: Transform::from_translation(Vec3::Z * -0.1),
mesh: sphere_mesh_direction.clone(),
material: maroon_emissive.clone(),
..default()
},
NotShadowCaster,
));
});
}
}
// camera
commands.spawn(Camera3dBundle {
camera: Camera {
hdr: true,
..default()
},
transform: Transform::from_xyz(-4.0, 5.0, 10.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
commands.spawn(
TextBundle::from_section(INSTRUCTIONS, TextStyle::default()).with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}Additional examples can be found in:
Trait Implementations§
source§impl Clone for SphereMeshBuilder
impl Clone for SphereMeshBuilder
source§fn clone(&self) -> SphereMeshBuilder
fn clone(&self) -> SphereMeshBuilder
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for SphereMeshBuilder
impl Debug for SphereMeshBuilder
source§impl Default for SphereMeshBuilder
impl Default for SphereMeshBuilder
source§fn default() -> SphereMeshBuilder
fn default() -> SphereMeshBuilder
Returns the “default value” for a type. Read more
source§impl MeshBuilder for SphereMeshBuilder
impl MeshBuilder for SphereMeshBuilder
impl Copy for SphereMeshBuilder
Auto Trait Implementations§
impl Freeze for SphereMeshBuilder
impl RefUnwindSafe for SphereMeshBuilder
impl Send for SphereMeshBuilder
impl Sync for SphereMeshBuilder
impl Unpin for SphereMeshBuilder
impl UnwindSafe for SphereMeshBuilder
Blanket Implementations§
source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
Return the
T ShaderType for self. When used in AsBindGroup
derives, it is safe to assume that all images in self exist.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit)source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates
Self using data from the given World.source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
source§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
Read this value from the supplied reader. Same as
ReadEndian::read_from_little_endian().