pub struct Quat(/* private fields */);Expand description
A quaternion representing an orientation.
This quaternion is intended to be of unit length but may denormalize due to floating point “error creep” which can occur when successive quaternion operations are applied.
SIMD vector types are used for storage on supported platforms.
This type is 16 byte aligned.
Implementations§
source§impl Quat
impl Quat
sourcepub const fn from_xyzw(x: f32, y: f32, z: f32, w: f32) -> Quat
pub const fn from_xyzw(x: f32, y: f32, z: f32, w: f32) -> Quat
Creates a new rotation quaternion.
This should generally not be called manually unless you know what you are doing.
Use one of the other constructors instead such as identity or from_axis_angle.
from_xyzw is mostly used by unit tests and serde deserialization.
§Preconditions
This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.
Examples found in repository?
More examples
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
const CAMERA_POSITIONS: &[Transform] = &[
Transform {
translation: Vec3::new(1.5, 1.5, 1.5),
rotation: Quat::from_xyzw(-0.279, 0.364, 0.115, 0.880),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 0.0, 0.2),
rotation: Quat::from_xyzw(0.094, 0.676, 0.116, 0.721),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 2.6, -4.3),
rotation: Quat::from_xyzw(0.170, 0.908, 0.308, 0.225),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(-1.0, 0.8, -1.2),
rotation: Quat::from_xyzw(-0.004, 0.909, 0.247, -0.335),
scale: Vec3::ONE,
},
];sourcepub const fn from_array(a: [f32; 4]) -> Quat
pub const fn from_array(a: [f32; 4]) -> Quat
Creates a rotation quaternion from an array.
§Preconditions
This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.
sourcepub const fn from_vec4(v: Vec4) -> Quat
pub const fn from_vec4(v: Vec4) -> Quat
Creates a new rotation quaternion from a 4D vector.
§Preconditions
This function does not check if the input is normalized, it is up to the user to provide normalized input or to normalized the resulting quaternion.
sourcepub fn from_slice(slice: &[f32]) -> Quat
pub fn from_slice(slice: &[f32]) -> Quat
sourcepub fn write_to_slice(self, slice: &mut [f32])
pub fn write_to_slice(self, slice: &mut [f32])
sourcepub fn from_axis_angle(axis: Vec3, angle: f32) -> Quat
pub fn from_axis_angle(axis: Vec3, angle: f32) -> Quat
Create a quaternion for a normalized rotation axis and angle (in radians).
The axis must be a unit vector.
§Panics
Will panic if axis is not normalized when glam_assert is enabled.
Examples found in repository?
More examples
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
fn button_system(
interaction_query: Query<
(&Interaction, &TargetCamera, &RotateCamera),
(Changed<Interaction>, With<Button>),
>,
mut camera_query: Query<&mut Transform, With<Camera>>,
) {
for (interaction, target_camera, RotateCamera(direction)) in &interaction_query {
if let Interaction::Pressed = *interaction {
// Since TargetCamera propagates to the children, we can use it to find
// which side of the screen the button is on.
if let Ok(mut camera_transform) = camera_query.get_mut(target_camera.entity()) {
let angle = match direction {
Direction::Left => -0.1,
Direction::Right => 0.1,
};
camera_transform.rotate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, angle));
}
}
}
}304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
fn move_camera(
keyboard_input: Res<ButtonInput<KeyCode>>,
mut mouse_wheel_input: EventReader<MouseWheel>,
mut cameras: Query<&mut Transform, With<Camera>>,
) {
let (mut distance_delta, mut theta_delta) = (0.0, 0.0);
// Handle keyboard events.
if keyboard_input.pressed(KeyCode::KeyW) {
distance_delta -= CAMERA_KEYBOARD_ZOOM_SPEED;
}
if keyboard_input.pressed(KeyCode::KeyS) {
distance_delta += CAMERA_KEYBOARD_ZOOM_SPEED;
}
if keyboard_input.pressed(KeyCode::KeyA) {
theta_delta += CAMERA_KEYBOARD_ORBIT_SPEED;
}
if keyboard_input.pressed(KeyCode::KeyD) {
theta_delta -= CAMERA_KEYBOARD_ORBIT_SPEED;
}
// Handle mouse events.
for mouse_wheel_event in mouse_wheel_input.read() {
distance_delta -= mouse_wheel_event.y * CAMERA_MOUSE_WHEEL_ZOOM_SPEED;
}
// Update transforms.
for mut camera_transform in cameras.iter_mut() {
let local_z = camera_transform.local_z().as_vec3().normalize_or_zero();
if distance_delta != 0.0 {
camera_transform.translation = (camera_transform.translation.length() + distance_delta)
.clamp(CAMERA_ZOOM_RANGE.start, CAMERA_ZOOM_RANGE.end)
* local_z;
}
if theta_delta != 0.0 {
camera_transform
.translate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, theta_delta));
camera_transform.look_at(Vec3::ZERO, Vec3::Y);
}
}
}19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut animations: ResMut<Assets<AnimationClip>>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// Light
commands.spawn(PointLightBundle {
point_light: PointLight {
intensity: 500_000.0,
..default()
},
transform: Transform::from_xyz(0.0, 2.5, 0.0),
..default()
});
// Let's use the `Name` component to target entities. We can use anything we
// like, but names are convenient.
let planet = Name::new("planet");
let orbit_controller = Name::new("orbit_controller");
let satellite = Name::new("satellite");
// Creating the animation
let mut animation = AnimationClip::default();
// A curve can modify a single part of a transform, here the translation
let planet_animation_target_id = AnimationTargetId::from_name(&planet);
animation.add_curve_to_target(
planet_animation_target_id,
VariableCurve {
keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
keyframes: Keyframes::Translation(vec![
Vec3::new(1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, -1.0),
Vec3::new(1.0, 0.0, -1.0),
// in case seamless looping is wanted, the last keyframe should
// be the same as the first one
Vec3::new(1.0, 0.0, 1.0),
]),
interpolation: Interpolation::Linear,
},
);
// Or it can modify the rotation of the transform.
// To find the entity to modify, the hierarchy will be traversed looking for
// an entity with the right name at each level
let orbit_controller_animation_target_id =
AnimationTargetId::from_names([planet.clone(), orbit_controller.clone()].iter());
animation.add_curve_to_target(
orbit_controller_animation_target_id,
VariableCurve {
keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
keyframes: Keyframes::Rotation(vec![
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]),
interpolation: Interpolation::Linear,
},
);
// If a curve in an animation is shorter than the other, it will not repeat
// until all other curves are finished. In that case, another animation should
// be created for each part that would have a different duration / period
let satellite_animation_target_id = AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
);
animation.add_curve_to_target(
satellite_animation_target_id,
VariableCurve {
keyframe_timestamps: vec![0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0],
keyframes: Keyframes::Scale(vec![
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
]),
interpolation: Interpolation::Linear,
},
);
// There can be more than one curve targeting the same entity path
animation.add_curve_to_target(
AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
),
VariableCurve {
keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
keyframes: Keyframes::Rotation(vec![
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]),
interpolation: Interpolation::Linear,
},
);
// Create the animation graph
let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
// Create the animation player, and set it to repeat
let mut player = AnimationPlayer::default();
player.play(animation_index).repeat();
// Create the scene that will be animated
// First entity is the planet
let planet_entity = commands
.spawn((
PbrBundle {
mesh: meshes.add(Sphere::default()),
material: materials.add(Color::srgb(0.8, 0.7, 0.6)),
..default()
},
// Add the animation graph and player
planet,
graphs.add(graph),
player,
))
.id();
commands
.entity(planet_entity)
.insert(AnimationTarget {
id: planet_animation_target_id,
player: planet_entity,
})
.with_children(|p| {
// This entity is just used for animation, but doesn't display anything
p.spawn((
SpatialBundle::INHERITED_IDENTITY,
orbit_controller,
AnimationTarget {
id: orbit_controller_animation_target_id,
player: planet_entity,
},
))
.with_children(|p| {
// The satellite, placed at a distance of the planet
p.spawn((
PbrBundle {
transform: Transform::from_xyz(1.5, 0.0, 0.0),
mesh: meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
material: materials.add(Color::srgb(0.3, 0.9, 0.3)),
..default()
},
AnimationTarget {
id: satellite_animation_target_id,
player: planet_entity,
},
satellite,
));
});
});
}sourcepub fn from_scaled_axis(v: Vec3) -> Quat
pub fn from_scaled_axis(v: Vec3) -> Quat
Create a quaternion that rotates v.length() radians around v.normalize().
from_scaled_axis(Vec3::ZERO) results in the identity quaternion.
sourcepub fn from_rotation_x(angle: f32) -> Quat
pub fn from_rotation_x(angle: f32) -> Quat
Creates a quaternion from the angle (in radians) around the x axis.
Examples found in repository?
More examples
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// circular base
commands.spawn(PbrBundle {
mesh: meshes.add(Circle::new(4.0)),
material: materials.add(Color::WHITE),
transform: Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
..default()
});
// cube
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
material: materials.add(Color::srgb_u8(124, 144, 255)),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
});
// light
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
// camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
fn setup_scene(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-10.0, 5.0, 13.0).looking_at(Vec3::new(0., 1., 0.), Vec3::Y),
..default()
});
commands.spawn(PointLightBundle {
point_light: PointLight {
intensity: 10_000_000.0,
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(-4.0, 8.0, 13.0),
..default()
});
commands.spawn(SceneBundle {
scene: asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
transform: Transform::from_scale(Vec3::splat(0.07)),
..default()
});
// Ground
commands.spawn(PbrBundle {
mesh: meshes.add(Circle::new(7.0)),
material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
transform: Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
..default()
});
}61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// directional 'sun' light
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 32000.0,
..default()
},
transform: Transform::from_xyz(0.0, 2.0, 0.0)
.with_rotation(Quat::from_rotation_x(-PI / 4.)),
..default()
});
let skybox_handle = asset_server.load(CUBEMAPS[0].0);
// camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(0.0, 0.0, 8.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
CameraController::default(),
Skybox {
image: skybox_handle.clone(),
brightness: 1000.0,
},
));
// ambient light
// NOTE: The ambient light is used to scale how bright the environment map is so with a bright
// environment map, use an appropriate color and brightness to match
commands.insert_resource(AmbientLight {
color: Color::srgb_u8(210, 220, 240),
brightness: 1.0,
});
commands.insert_resource(Cubemap {
is_loaded: false,
index: 0,
image_handle: skybox_handle,
});
}81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
fn draw_example_collection(
mut gizmos: Gizmos,
mut my_gizmos: Gizmos<MyRoundGizmos>,
time: Res<Time>,
) {
gizmos.grid(
Vec3::ZERO,
Quat::from_rotation_x(PI / 2.),
UVec2::splat(20),
Vec2::new(2., 2.),
// Light gray
LinearRgba::gray(0.65),
);
gizmos.cuboid(
Transform::from_translation(Vec3::Y * 0.5).with_scale(Vec3::splat(1.25)),
BLACK,
);
gizmos.rect(
Vec3::new(time.elapsed_seconds().cos() * 2.5, 1., 0.),
Quat::from_rotation_y(PI / 2.),
Vec2::splat(2.),
LIME,
);
my_gizmos.sphere(Vec3::new(1., 0.5, 0.), Quat::IDENTITY, 0.5, RED);
my_gizmos
.rounded_cuboid(
Vec3::new(-2.0, 0.75, -0.75),
Quat::IDENTITY,
Vec3::splat(0.9),
TURQUOISE,
)
.edge_radius(0.1)
.arc_resolution(4);
for y in [0., 0.5, 1.] {
gizmos.ray(
Vec3::new(1., y, 0.),
Vec3::new(-3., (time.elapsed_seconds() * 3.).sin(), 0.),
BLUE,
);
}
my_gizmos
.arc_3d(
180.0_f32.to_radians(),
0.2,
Vec3::ONE,
Quat::from_rotation_arc(Vec3::Y, Vec3::ONE.normalize()),
ORANGE,
)
.resolution(10);
// Circles have 32 line-segments by default.
my_gizmos.circle(Vec3::ZERO, Dir3::Y, 3., BLACK);
// You may want to increase this for larger circles or spheres.
my_gizmos
.circle(Vec3::ZERO, Dir3::Y, 3.1, NAVY)
.resolution(64);
my_gizmos
.sphere(Vec3::ZERO, Quat::IDENTITY, 3.2, BLACK)
.resolution(64);
gizmos.arrow(Vec3::ZERO, Vec3::ONE * 1.5, YELLOW);
// You can create more complex arrows using the arrow builder.
gizmos
.arrow(Vec3::new(2., 0., 2.), Vec3::new(2., 2., 2.), ORANGE_RED)
.with_double_end()
.with_tip_length(0.5);
}135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut images: ResMut<Assets<Image>>,
mut scene_controller: ResMut<SceneController>,
render_device: Res<RenderDevice>,
) {
let render_target = setup_render_target(
&mut commands,
&mut images,
&render_device,
&mut scene_controller,
// pre_roll_frames should be big enough for full scene render,
// but the bigger it is, the longer example will run.
// To visualize stages of scene rendering change this param to 0
// and change AppConfig::single_image to false in main
// Stages are:
// 1. Transparent image
// 2. Few black box images
// 3. Fully rendered scene images
// Exact number depends on device speed, device load and scene size
40,
"main_scene".into(),
);
// Scene example for non black box picture
// circular base
commands.spawn(PbrBundle {
mesh: meshes.add(Circle::new(4.0)),
material: materials.add(Color::WHITE),
transform: Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
..default()
});
// cube
commands.spawn(PbrBundle {
mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
material: materials.add(Color::srgb_u8(124, 144, 255)),
transform: Transform::from_xyz(0.0, 0.5, 0.0),
..default()
});
// light
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(4.0, 8.0, 4.0),
..default()
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
tonemapping: Tonemapping::None,
camera: Camera {
// render to image
target: render_target,
..default()
},
..default()
});
}sourcepub fn from_rotation_y(angle: f32) -> Quat
pub fn from_rotation_y(angle: f32) -> Quat
Creates a quaternion from the angle (in radians) around the y axis.
Examples found in repository?
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
fn rotate_camera(mut query: Query<&mut Transform, With<Camera>>, time: Res<Time>) {
let mut transform = query.single_mut();
transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(time.delta_seconds() / 2.));
}
fn draw_example_collection(
mut gizmos: Gizmos,
mut my_gizmos: Gizmos<MyRoundGizmos>,
time: Res<Time>,
) {
gizmos.grid(
Vec3::ZERO,
Quat::from_rotation_x(PI / 2.),
UVec2::splat(20),
Vec2::new(2., 2.),
// Light gray
LinearRgba::gray(0.65),
);
gizmos.cuboid(
Transform::from_translation(Vec3::Y * 0.5).with_scale(Vec3::splat(1.25)),
BLACK,
);
gizmos.rect(
Vec3::new(time.elapsed_seconds().cos() * 2.5, 1., 0.),
Quat::from_rotation_y(PI / 2.),
Vec2::splat(2.),
LIME,
);
my_gizmos.sphere(Vec3::new(1., 0.5, 0.), Quat::IDENTITY, 0.5, RED);
my_gizmos
.rounded_cuboid(
Vec3::new(-2.0, 0.75, -0.75),
Quat::IDENTITY,
Vec3::splat(0.9),
TURQUOISE,
)
.edge_radius(0.1)
.arc_resolution(4);
for y in [0., 0.5, 1.] {
gizmos.ray(
Vec3::new(1., y, 0.),
Vec3::new(-3., (time.elapsed_seconds() * 3.).sin(), 0.),
BLUE,
);
}
my_gizmos
.arc_3d(
180.0_f32.to_radians(),
0.2,
Vec3::ONE,
Quat::from_rotation_arc(Vec3::Y, Vec3::ONE.normalize()),
ORANGE,
)
.resolution(10);
// Circles have 32 line-segments by default.
my_gizmos.circle(Vec3::ZERO, Dir3::Y, 3., BLACK);
// You may want to increase this for larger circles or spheres.
my_gizmos
.circle(Vec3::ZERO, Dir3::Y, 3.1, NAVY)
.resolution(64);
my_gizmos
.sphere(Vec3::ZERO, Quat::IDENTITY, 3.2, BLACK)
.resolution(64);
gizmos.arrow(Vec3::ZERO, Vec3::ONE * 1.5, YELLOW);
// You can create more complex arrows using the arrow builder.
gizmos
.arrow(Vec3::new(2., 0., 2.), Vec3::new(2., 2., 2.), ORANGE_RED)
.with_double_end()
.with_tip_length(0.5);
}More examples
200 201 202 203 204 205 206 207 208 209 210 211 212 213
fn rotation(
mut query: Query<&mut Transform, With<Camera>>,
input: Res<ButtonInput<KeyCode>>,
time: Res<Time>,
) {
let mut transform = query.single_mut();
let delta = time.delta_seconds();
if input.pressed(KeyCode::ArrowLeft) {
transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(delta));
} else if input.pressed(KeyCode::ArrowRight) {
transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-delta));
}
}141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
fn rotate_camera(
mut camera: Query<&mut Transform, With<Camera>>,
app_status: Res<AppStatus>,
time: Res<Time>,
mut stopwatch: Local<Stopwatch>,
) {
if app_status.light_mode == LightMode::EnvironmentMap {
stopwatch.tick(time.delta());
}
let now = stopwatch.elapsed_secs();
for mut transform in camera.iter_mut() {
*transform = Transform::from_translation(
Quat::from_rotation_y(now).mul_vec3(CAMERA_INITIAL_POSITION),
)
.looking_at(Vec3::ZERO, Vec3::Y);
}
}- examples/math/random_sampling.rs
- examples/transforms/align.rs
- examples/transforms/scale.rs
- examples/3d/color_grading.rs
- examples/3d/tonemapping.rs
- examples/3d/auto_exposure.rs
- examples/transforms/transform.rs
- examples/3d/blend_modes.rs
- examples/games/alien_cake_addict.rs
- examples/3d/meshlet.rs
- examples/stress_tests/many_foxes.rs
sourcepub fn from_rotation_z(angle: f32) -> Quat
pub fn from_rotation_z(angle: f32) -> Quat
Creates a quaternion from the angle (in radians) around the z axis.
Examples found in repository?
More examples
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
fn setup(asset_server: Res<AssetServer>, mut commands: Commands) {
commands.insert_resource(MorphData {
the_wave: asset_server
.load(GltfAssetLabel::Animation(2).from_asset("models/animated/MorphStressTest.gltf")),
mesh: asset_server.load(
GltfAssetLabel::Primitive {
mesh: 0,
primitive: 0,
}
.from_asset("models/animated/MorphStressTest.gltf"),
),
});
commands.spawn(SceneBundle {
scene: asset_server
.load(GltfAssetLabel::Scene(0).from_asset("models/animated/MorphStressTest.gltf")),
..default()
});
commands.spawn(DirectionalLightBundle {
transform: Transform::from_rotation(Quat::from_rotation_z(PI / 2.0)),
..default()
});
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(3.0, 2.1, 10.2).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}sourcepub fn from_euler(euler: EulerRot, a: f32, b: f32, c: f32) -> Quat
pub fn from_euler(euler: EulerRot, a: f32, b: f32, c: f32) -> Quat
Creates a quaternion from the given Euler rotation sequence and the angles (in radians).
Examples found in repository?
More examples
56 57 58 59 60 61 62 63 64 65 66 67 68
fn animate_light_direction(
time: Res<Time>,
mut query: Query<&mut Transform, With<DirectionalLight>>,
) {
for mut transform in &mut query {
transform.rotation = Quat::from_euler(
EulerRot::ZYX,
0.0,
time.elapsed_seconds() * PI / 5.0,
-FRAC_PI_4,
);
}
}149 150 151 152 153 154 155 156 157 158 159 160 161
fn light_sway(time: Res<Time>, mut query: Query<(&mut Transform, &mut SpotLight)>) {
for (mut transform, mut angles) in query.iter_mut() {
transform.rotation = Quat::from_euler(
EulerRot::XYZ,
-FRAC_PI_2 + (time.elapsed_seconds() * 0.67 * 3.0).sin() * 0.5,
(time.elapsed_seconds() * 3.0).sin() * 0.5,
0.0,
);
let angle = ((time.elapsed_seconds() * 1.2).sin() + 1.0) * (FRAC_PI_4 - 0.1);
angles.inner_angle = angle * 0.8;
angles.outer_angle = angle;
}
}203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
fn setup_scene(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(10.0, 10.0, 15.0)
.looking_at(Vec3::new(0.0, 0.0, 0.0), Vec3::Y),
..default()
});
// Light
commands.spawn(DirectionalLightBundle {
transform: Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
directional_light: DirectionalLight {
shadows_enabled: true,
..default()
},
..default()
});
// Plane
commands.spawn((
PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(50000.0, 50000.0)),
material: materials.add(Color::srgb(0.7, 0.2, 0.2)),
..default()
},
Loading,
));
}94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn move_directional_light(
input: Res<ButtonInput<KeyCode>>,
mut directional_lights: Query<&mut Transform, With<DirectionalLight>>,
) {
let mut delta_theta = Vec2::ZERO;
if input.pressed(KeyCode::KeyW) || input.pressed(KeyCode::ArrowUp) {
delta_theta.y += DIRECTIONAL_LIGHT_MOVEMENT_SPEED;
}
if input.pressed(KeyCode::KeyS) || input.pressed(KeyCode::ArrowDown) {
delta_theta.y -= DIRECTIONAL_LIGHT_MOVEMENT_SPEED;
}
if input.pressed(KeyCode::KeyA) || input.pressed(KeyCode::ArrowLeft) {
delta_theta.x += DIRECTIONAL_LIGHT_MOVEMENT_SPEED;
}
if input.pressed(KeyCode::KeyD) || input.pressed(KeyCode::ArrowRight) {
delta_theta.x -= DIRECTIONAL_LIGHT_MOVEMENT_SPEED;
}
if delta_theta == Vec2::ZERO {
return;
}
let delta_quat = Quat::from_euler(EulerRot::XZY, delta_theta.y, 0.0, delta_theta.x);
for mut transform in directional_lights.iter_mut() {
transform.rotate(delta_quat);
}
}381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
fn add_basic_scene(commands: &mut Commands, asset_server: &AssetServer) {
// Spawn the main scene.
commands.spawn(SceneBundle {
scene: asset_server.load(
GltfAssetLabel::Scene(0).from_asset("models/TonemappingTest/TonemappingTest.gltf"),
),
..default()
});
// Spawn the flight helmet.
commands.spawn(SceneBundle {
scene: asset_server
.load(GltfAssetLabel::Scene(0).from_asset("models/FlightHelmet/FlightHelmet.gltf")),
transform: Transform::from_xyz(0.5, 0.0, -0.5)
.with_rotation(Quat::from_rotation_y(-0.15 * PI)),
..default()
});
// Spawn the light.
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 15000.0,
shadows_enabled: true,
..default()
},
transform: Transform::from_rotation(Quat::from_euler(
EulerRot::ZYX,
0.0,
PI * -0.15,
PI * -0.15,
)),
cascade_shadow_config: CascadeShadowConfigBuilder {
maximum_distance: 3.0,
first_cascade_far_bound: 0.9,
..default()
}
.into(),
..default()
});
}- examples/3d/tonemapping.rs
- examples/3d/ssao.rs
- examples/3d/visibility_range.rs
- examples/animation/animated_fox.rs
- examples/3d/shadow_caster_receiver.rs
- examples/3d/anti_aliasing.rs
- examples/3d/meshlet.rs
- examples/stress_tests/many_foxes.rs
- examples/3d/split_screen.rs
- examples/3d/../helpers/camera_controller.rs
- examples/3d/deferred_rendering.rs
- examples/3d/transmission.rs
sourcepub fn from_mat3(mat: &Mat3) -> Quat
pub fn from_mat3(mat: &Mat3) -> Quat
Creates a quaternion from a 3x3 rotation matrix.
Examples found in repository?
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
fn rotate_primitive_2d_meshes(
mut primitives_2d: Query<
(&mut Transform, &ViewVisibility),
(With<PrimitiveData>, With<MeshDim2>),
>,
time: Res<Time>,
) {
let rotation_2d = Quat::from_mat3(&Mat3::from_angle(time.elapsed_seconds()));
primitives_2d
.iter_mut()
.filter(|(_, vis)| vis.get())
.for_each(|(mut transform, _)| {
transform.rotation = rotation_2d;
});
}sourcepub fn from_mat3a(mat: &Mat3A) -> Quat
pub fn from_mat3a(mat: &Mat3A) -> Quat
Creates a quaternion from a 3x3 SIMD aligned rotation matrix.
sourcepub fn from_mat4(mat: &Mat4) -> Quat
pub fn from_mat4(mat: &Mat4) -> Quat
Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix.
sourcepub fn from_rotation_arc(from: Vec3, to: Vec3) -> Quat
pub fn from_rotation_arc(from: Vec3, to: Vec3) -> Quat
Gets the minimal rotation for transforming from to to. The rotation is in the
plane spanned by the two vectors. Will rotate at most 180 degrees.
The inputs must be unit vectors.
from_rotation_arc(from, to) * from ≈ to.
For near-singular cases (from≈to and from≈-to) the current implementation
is only accurate to about 0.001 (for f32).
§Panics
Will panic if from or to are not normalized when glam_assert is enabled.
Examples found in repository?
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
fn rotate_primitive_3d_meshes(
mut primitives_3d: Query<
(&mut Transform, &ViewVisibility),
(With<PrimitiveData>, With<MeshDim3>),
>,
time: Res<Time>,
) {
let rotation_3d = Quat::from_rotation_arc(
Vec3::Z,
Vec3::new(
time.elapsed_seconds().sin(),
time.elapsed_seconds().cos(),
time.elapsed_seconds().sin() * 0.5,
)
.try_normalize()
.unwrap_or(Vec3::Z),
);
primitives_3d
.iter_mut()
.filter(|(_, vis)| vis.get())
.for_each(|(mut transform, _)| {
transform.rotation = rotation_3d;
});
}
fn draw_gizmos_3d(mut gizmos: Gizmos, state: Res<State<PrimitiveSelected>>, time: Res<Time>) {
const POSITION: Vec3 = Vec3::new(LEFT_RIGHT_OFFSET_3D, 0.0, 0.0);
let rotation = Quat::from_rotation_arc(
Vec3::Z,
Vec3::new(
time.elapsed_seconds().sin(),
time.elapsed_seconds().cos(),
time.elapsed_seconds().sin() * 0.5,
)
.try_normalize()
.unwrap_or(Vec3::Z),
);
let color = Color::WHITE;
let resolution = 10;
match state.get() {
PrimitiveSelected::RectangleAndCuboid => {
gizmos.primitive_3d(&CUBOID, POSITION, rotation, color);
}
PrimitiveSelected::CircleAndSphere => drop(
gizmos
.primitive_3d(&SPHERE, POSITION, rotation, color)
.resolution(resolution),
),
PrimitiveSelected::Ellipse => {}
PrimitiveSelected::Triangle => gizmos.primitive_3d(&TRIANGLE_3D, POSITION, rotation, color),
PrimitiveSelected::Plane => drop(gizmos.primitive_3d(&PLANE_3D, POSITION, rotation, color)),
PrimitiveSelected::Line => gizmos.primitive_3d(&LINE3D, POSITION, rotation, color),
PrimitiveSelected::Segment => gizmos.primitive_3d(&SEGMENT_3D, POSITION, rotation, color),
PrimitiveSelected::Polyline => gizmos.primitive_3d(&POLYLINE_3D, POSITION, rotation, color),
PrimitiveSelected::Polygon => {}
PrimitiveSelected::RegularPolygon => {}
PrimitiveSelected::Capsule => drop(
gizmos
.primitive_3d(&CAPSULE_3D, POSITION, rotation, color)
.resolution(resolution),
),
PrimitiveSelected::Cylinder => drop(
gizmos
.primitive_3d(&CYLINDER, POSITION, rotation, color)
.resolution(resolution),
),
PrimitiveSelected::Cone => drop(
gizmos
.primitive_3d(&CONE, POSITION, rotation, color)
.resolution(resolution),
),
PrimitiveSelected::ConicalFrustum => {
gizmos.primitive_3d(&CONICAL_FRUSTUM, POSITION, rotation, color);
}
PrimitiveSelected::Torus => drop(
gizmos
.primitive_3d(&TORUS, POSITION, rotation, color)
.minor_resolution(resolution)
.major_resolution(resolution),
),
PrimitiveSelected::Tetrahedron => {
gizmos.primitive_3d(&TETRAHEDRON, POSITION, rotation, color);
}
PrimitiveSelected::Arc => {}
PrimitiveSelected::CircularSector => {}
PrimitiveSelected::CircularSegment => {}
}
}More examples
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
fn snap_to_player_system(
mut query: Query<&mut Transform, (With<SnapToPlayer>, Without<Player>)>,
player_query: Query<&Transform, With<Player>>,
) {
let player_transform = player_query.single();
// get the player translation in 2D
let player_translation = player_transform.translation.xy();
for mut enemy_transform in &mut query {
// get the vector from the enemy ship to the player ship in 2D and normalize it.
let to_player = (player_translation - enemy_transform.translation.xy()).normalize();
// get the quaternion to rotate from the initial enemy facing direction to the direction
// facing the player
let rotate_to_player = Quat::from_rotation_arc(Vec3::Y, to_player.extend(0.));
// rotate the enemy to face the player
enemy_transform.rotation = rotate_to_player;
}
}81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
fn draw_example_collection(
mut gizmos: Gizmos,
mut my_gizmos: Gizmos<MyRoundGizmos>,
time: Res<Time>,
) {
gizmos.grid(
Vec3::ZERO,
Quat::from_rotation_x(PI / 2.),
UVec2::splat(20),
Vec2::new(2., 2.),
// Light gray
LinearRgba::gray(0.65),
);
gizmos.cuboid(
Transform::from_translation(Vec3::Y * 0.5).with_scale(Vec3::splat(1.25)),
BLACK,
);
gizmos.rect(
Vec3::new(time.elapsed_seconds().cos() * 2.5, 1., 0.),
Quat::from_rotation_y(PI / 2.),
Vec2::splat(2.),
LIME,
);
my_gizmos.sphere(Vec3::new(1., 0.5, 0.), Quat::IDENTITY, 0.5, RED);
my_gizmos
.rounded_cuboid(
Vec3::new(-2.0, 0.75, -0.75),
Quat::IDENTITY,
Vec3::splat(0.9),
TURQUOISE,
)
.edge_radius(0.1)
.arc_resolution(4);
for y in [0., 0.5, 1.] {
gizmos.ray(
Vec3::new(1., y, 0.),
Vec3::new(-3., (time.elapsed_seconds() * 3.).sin(), 0.),
BLUE,
);
}
my_gizmos
.arc_3d(
180.0_f32.to_radians(),
0.2,
Vec3::ONE,
Quat::from_rotation_arc(Vec3::Y, Vec3::ONE.normalize()),
ORANGE,
)
.resolution(10);
// Circles have 32 line-segments by default.
my_gizmos.circle(Vec3::ZERO, Dir3::Y, 3., BLACK);
// You may want to increase this for larger circles or spheres.
my_gizmos
.circle(Vec3::ZERO, Dir3::Y, 3.1, NAVY)
.resolution(64);
my_gizmos
.sphere(Vec3::ZERO, Quat::IDENTITY, 3.2, BLACK)
.resolution(64);
gizmos.arrow(Vec3::ZERO, Vec3::ONE * 1.5, YELLOW);
// You can create more complex arrows using the arrow builder.
gizmos
.arrow(Vec3::new(2., 0., 2.), Vec3::new(2., 2., 2.), ORANGE_RED)
.with_double_end()
.with_tip_length(0.5);
}sourcepub fn from_rotation_arc_colinear(from: Vec3, to: Vec3) -> Quat
pub fn from_rotation_arc_colinear(from: Vec3, to: Vec3) -> Quat
Gets the minimal rotation for transforming from to either to or -to. This means
that the resulting quaternion will rotate from so that it is colinear with to.
The rotation is in the plane spanned by the two vectors. Will rotate at most 90 degrees.
The inputs must be unit vectors.
to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1.
§Panics
Will panic if from or to are not normalized when glam_assert is enabled.
sourcepub fn from_rotation_arc_2d(from: Vec2, to: Vec2) -> Quat
pub fn from_rotation_arc_2d(from: Vec2, to: Vec2) -> Quat
Gets the minimal rotation for transforming from to to. The resulting rotation is
around the z axis. Will rotate at most 180 degrees.
The inputs must be unit vectors.
from_rotation_arc_2d(from, to) * from ≈ to.
For near-singular cases (from≈to and from≈-to) the current implementation
is only accurate to about 0.001 (for f32).
§Panics
Will panic if from or to are not normalized when glam_assert is enabled.
sourcepub fn to_axis_angle(self) -> (Vec3, f32)
pub fn to_axis_angle(self) -> (Vec3, f32)
Returns the rotation axis (normalized) and angle (in radians) of self.
sourcepub fn to_scaled_axis(self) -> Vec3
pub fn to_scaled_axis(self) -> Vec3
Returns the rotation axis scaled by the rotation in radians.
Examples found in repository?
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
fn bounding_shapes_2d(
shapes: Query<&Transform, With<Shape2d>>,
mut gizmos: Gizmos,
bounding_shape: Res<State<BoundingShape>>,
) {
for transform in shapes.iter() {
// Get the rotation angle from the 3D rotation.
let rotation = transform.rotation.to_scaled_axis().z;
match bounding_shape.get() {
BoundingShape::None => (),
BoundingShape::BoundingBox => {
// Get the AABB of the primitive with the rotation and translation of the mesh.
let aabb = HEART.aabb_2d(transform.translation.xy(), rotation);
gizmos.rect_2d(aabb.center(), 0., aabb.half_size() * 2., WHITE);
}
BoundingShape::BoundingSphere => {
// Get the bounding sphere of the primitive with the rotation and translation of the mesh.
let bounding_circle = HEART.bounding_circle(transform.translation.xy(), rotation);
gizmos
.circle_2d(bounding_circle.center(), bounding_circle.radius(), WHITE)
.resolution(64);
}
}
}
}sourcepub fn to_euler(self, euler: EulerRot) -> (f32, f32, f32)
pub fn to_euler(self, euler: EulerRot) -> (f32, f32, f32)
Returns the rotation angles for the given euler rotation sequence.
Examples found in repository?
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
fn draw_bounds<Shape: Bounded2d + Send + Sync + 'static>(
q: Query<(&DrawBounds<Shape>, &GlobalTransform)>,
mut gizmos: Gizmos,
) {
for (shape, transform) in &q {
let (_, rotation, translation) = transform.to_scale_rotation_translation();
let translation = translation.truncate();
let rotation = rotation.to_euler(EulerRot::XYZ).2;
let aabb = shape.0.aabb_2d(translation, rotation);
gizmos.rect_2d(aabb.center(), 0.0, aabb.half_size() * 2.0, RED);
let bounding_circle = shape.0.bounding_circle(translation, rotation);
gizmos.circle_2d(bounding_circle.center, bounding_circle.radius(), BLUE);
}
}More examples
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
fn render_shapes(mut gizmos: Gizmos, query: Query<(&Shape, &Transform)>) {
let color = GRAY;
for (shape, transform) in query.iter() {
let translation = transform.translation.xy();
let rotation = transform.rotation.to_euler(EulerRot::YXZ).2;
match shape {
Shape::Rectangle(r) => {
gizmos.primitive_2d(r, translation, rotation, color);
}
Shape::Circle(c) => {
gizmos.primitive_2d(c, translation, rotation, color);
}
Shape::Triangle(t) => {
gizmos.primitive_2d(t, translation, rotation, color);
}
Shape::Line(l) => {
gizmos.primitive_2d(l, translation, rotation, color);
}
Shape::Capsule(c) => {
gizmos.primitive_2d(c, translation, rotation, color);
}
Shape::Polygon(p) => {
gizmos.primitive_2d(p, translation, rotation, color);
}
}
}
}
#[derive(Component)]
enum DesiredVolume {
Aabb,
Circle,
}
#[derive(Component, Debug)]
enum CurrentVolume {
Aabb(Aabb2d),
Circle(BoundingCircle),
}
fn update_volumes(
mut commands: Commands,
query: Query<
(Entity, &DesiredVolume, &Shape, &Transform),
Or<(Changed<DesiredVolume>, Changed<Shape>, Changed<Transform>)>,
>,
) {
for (entity, desired_volume, shape, transform) in query.iter() {
let translation = transform.translation.xy();
let rotation = transform.rotation.to_euler(EulerRot::YXZ).2;
match desired_volume {
DesiredVolume::Aabb => {
let aabb = match shape {
Shape::Rectangle(r) => r.aabb_2d(translation, rotation),
Shape::Circle(c) => c.aabb_2d(translation, rotation),
Shape::Triangle(t) => t.aabb_2d(translation, rotation),
Shape::Line(l) => l.aabb_2d(translation, rotation),
Shape::Capsule(c) => c.aabb_2d(translation, rotation),
Shape::Polygon(p) => p.aabb_2d(translation, rotation),
};
commands.entity(entity).insert(CurrentVolume::Aabb(aabb));
}
DesiredVolume::Circle => {
let circle = match shape {
Shape::Rectangle(r) => r.bounding_circle(translation, rotation),
Shape::Circle(c) => c.bounding_circle(translation, rotation),
Shape::Triangle(t) => t.bounding_circle(translation, rotation),
Shape::Line(l) => l.bounding_circle(translation, rotation),
Shape::Capsule(c) => c.bounding_circle(translation, rotation),
Shape::Polygon(p) => p.bounding_circle(translation, rotation),
};
commands
.entity(entity)
.insert(CurrentVolume::Circle(circle));
}
}
}
}101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
fn run_camera_controller(
time: Res<Time>,
mut windows: Query<&mut Window>,
mut mouse_events: EventReader<MouseMotion>,
mut scroll_events: EventReader<MouseWheel>,
mouse_button_input: Res<ButtonInput<MouseButton>>,
key_input: Res<ButtonInput<KeyCode>>,
mut toggle_cursor_grab: Local<bool>,
mut mouse_cursor_grab: Local<bool>,
mut query: Query<(&mut Transform, &mut CameraController), With<Camera>>,
) {
let dt = time.delta_seconds();
if let Ok((mut transform, mut controller)) = query.get_single_mut() {
if !controller.initialized {
let (yaw, pitch, _roll) = transform.rotation.to_euler(EulerRot::YXZ);
controller.yaw = yaw;
controller.pitch = pitch;
controller.initialized = true;
info!("{}", *controller);
}
if !controller.enabled {
mouse_events.clear();
return;
}
let mut scroll = 0.0;
for scroll_event in scroll_events.read() {
let amount = match scroll_event.unit {
MouseScrollUnit::Line => scroll_event.y,
MouseScrollUnit::Pixel => scroll_event.y / 16.0,
};
scroll += amount;
}
controller.walk_speed += scroll * controller.scroll_factor * controller.walk_speed;
controller.run_speed = controller.walk_speed * 3.0;
// Handle key input
let mut axis_input = Vec3::ZERO;
if key_input.pressed(controller.key_forward) {
axis_input.z += 1.0;
}
if key_input.pressed(controller.key_back) {
axis_input.z -= 1.0;
}
if key_input.pressed(controller.key_right) {
axis_input.x += 1.0;
}
if key_input.pressed(controller.key_left) {
axis_input.x -= 1.0;
}
if key_input.pressed(controller.key_up) {
axis_input.y += 1.0;
}
if key_input.pressed(controller.key_down) {
axis_input.y -= 1.0;
}
let mut cursor_grab_change = false;
if key_input.just_pressed(controller.keyboard_key_toggle_cursor_grab) {
*toggle_cursor_grab = !*toggle_cursor_grab;
cursor_grab_change = true;
}
if mouse_button_input.just_pressed(controller.mouse_key_cursor_grab) {
*mouse_cursor_grab = true;
cursor_grab_change = true;
}
if mouse_button_input.just_released(controller.mouse_key_cursor_grab) {
*mouse_cursor_grab = false;
cursor_grab_change = true;
}
let cursor_grab = *mouse_cursor_grab || *toggle_cursor_grab;
// Apply movement update
if axis_input != Vec3::ZERO {
let max_speed = if key_input.pressed(controller.key_run) {
controller.run_speed
} else {
controller.walk_speed
};
controller.velocity = axis_input.normalize() * max_speed;
} else {
let friction = controller.friction.clamp(0.0, 1.0);
controller.velocity *= 1.0 - friction;
if controller.velocity.length_squared() < 1e-6 {
controller.velocity = Vec3::ZERO;
}
}
let forward = *transform.forward();
let right = *transform.right();
transform.translation += controller.velocity.x * dt * right
+ controller.velocity.y * dt * Vec3::Y
+ controller.velocity.z * dt * forward;
// Handle cursor grab
if cursor_grab_change {
if cursor_grab {
for mut window in &mut windows {
if !window.focused {
continue;
}
window.cursor.grab_mode = CursorGrabMode::Locked;
window.cursor.visible = false;
}
} else {
for mut window in &mut windows {
window.cursor.grab_mode = CursorGrabMode::None;
window.cursor.visible = true;
}
}
}
// Handle mouse input
let mut mouse_delta = Vec2::ZERO;
if cursor_grab {
for mouse_event in mouse_events.read() {
mouse_delta += mouse_event.delta;
}
} else {
mouse_events.clear();
}
if mouse_delta != Vec2::ZERO {
// Apply look update
controller.pitch = (controller.pitch
- mouse_delta.y * RADIANS_PER_DOT * controller.sensitivity)
.clamp(-PI / 2., PI / 2.);
controller.yaw -= mouse_delta.x * RADIANS_PER_DOT * controller.sensitivity;
transform.rotation =
Quat::from_euler(EulerRot::ZYX, 0.0, controller.yaw, controller.pitch);
}
}
}sourcepub fn conjugate(self) -> Quat
pub fn conjugate(self) -> Quat
Returns the quaternion conjugate of self. For a unit quaternion the
conjugate is also the inverse.
sourcepub fn inverse(self) -> Quat
pub fn inverse(self) -> Quat
Returns the inverse of a normalized quaternion.
Typically quaternion inverse returns the conjugate of a normalized quaternion.
Because self is assumed to already be unit length this method does not normalize
before returning the conjugate.
§Panics
Will panic if self is not normalized when glam_assert is enabled.
sourcepub fn dot(self, rhs: Quat) -> f32
pub fn dot(self, rhs: Quat) -> f32
Computes the dot product of self and rhs. The dot product is
equal to the cosine of the angle between two quaternion rotations.
sourcepub fn length_squared(self) -> f32
pub fn length_squared(self) -> f32
Computes the squared length of self.
This is generally faster than length() as it avoids a square
root operation.
sourcepub fn length_recip(self) -> f32
pub fn length_recip(self) -> f32
Computes 1.0 / length().
For valid results, self must not be of length zero.
sourcepub fn normalize(self) -> Quat
pub fn normalize(self) -> Quat
Returns self normalized to length 1.0.
For valid results, self must not be of length zero.
Panics
Will panic if self is zero length when glam_assert is enabled.
sourcepub fn is_finite(self) -> bool
pub fn is_finite(self) -> bool
Returns true if, and only if, all elements are finite.
If any element is either NaN, positive or negative infinity, this will return false.
pub fn is_nan(self) -> bool
sourcepub fn is_normalized(self) -> bool
pub fn is_normalized(self) -> bool
Returns whether self of length 1.0 or not.
Uses a precision threshold of 1e-6.
pub fn is_near_identity(self) -> bool
sourcepub fn angle_between(self, rhs: Quat) -> f32
pub fn angle_between(self, rhs: Quat) -> f32
Returns the angle (in radians) for the minimal rotation for transforming this quaternion into another.
Both quaternions must be normalized.
§Panics
Will panic if self or rhs are not normalized when glam_assert is enabled.
sourcepub fn abs_diff_eq(self, rhs: Quat, max_abs_diff: f32) -> bool
pub fn abs_diff_eq(self, rhs: Quat, max_abs_diff: f32) -> bool
Returns true if the absolute difference of all elements between self and rhs
is less than or equal to max_abs_diff.
This can be used to compare if two quaternions contain similar elements. It works
best when comparing with a known value. The max_abs_diff that should be used used
depends on the values being compared against.
For more see comparing floating point numbers.
sourcepub fn lerp(self, end: Quat, s: f32) -> Quat
pub fn lerp(self, end: Quat, s: f32) -> Quat
Performs a linear interpolation between self and rhs based on
the value s.
When s is 0.0, the result will be equal to self. When s
is 1.0, the result will be equal to rhs.
§Panics
Will panic if self or end are not normalized when glam_assert is enabled.
Examples found in repository?
157 158 159 160 161 162 163 164 165 166 167 168
fn look_at_star(
mut camera: Query<&mut Transform, (With<Camera>, Without<Star>)>,
star: Query<&Transform, With<Star>>,
) {
let mut camera = camera.single_mut();
let star = star.single();
let new_rotation = camera
.looking_at(star.translation, Vec3::Y)
.rotation
.lerp(camera.rotation, 0.1);
camera.rotation = new_rotation;
}More examples
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
fn rotate_cube(
mut cubes: Query<(&mut Transform, &mut CubeState), Without<Center>>,
center_spheres: Query<&Transform, With<Center>>,
timer: Res<Time>,
) {
// Calculate the point to circle around. (The position of the center_sphere)
let mut center: Vec3 = Vec3::ZERO;
for sphere in ¢er_spheres {
center += sphere.translation;
}
// Update the rotation of the cube(s).
for (mut transform, cube) in &mut cubes {
// Calculate the rotation of the cube if it would be looking at the sphere in the center.
let look_at_sphere = transform.looking_at(center, *transform.local_y());
// Interpolate between the current rotation and the fully turned rotation
// when looking a the sphere, with a given turn speed to get a smooth motion.
// With higher speed the curvature of the orbit would be smaller.
let incremental_turn_weight = cube.turn_speed * timer.delta_seconds();
let old_rotation = transform.rotation;
transform.rotation = old_rotation.lerp(look_at_sphere.rotation, incremental_turn_weight);
}
}sourcepub fn slerp(self, end: Quat, s: f32) -> Quat
pub fn slerp(self, end: Quat, s: f32) -> Quat
Performs a spherical linear interpolation between self and end
based on the value s.
When s is 0.0, the result will be equal to self. When s
is 1.0, the result will be equal to end.
§Panics
Will panic if self or end are not normalized when glam_assert is enabled.
Examples found in repository?
More examples
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
fn rotate_ship(mut ship: Query<(&mut Ship, &mut Transform)>) {
let (mut ship, mut ship_transform) = ship.single_mut();
if !ship.in_motion {
return;
}
let start = ship.initial_transform.rotation;
let end = ship.target_transform.rotation;
let p: f32 = ship.progress.into();
let t = p / 100.;
*ship_transform = Transform::from_rotation(start.slerp(end, t));
if ship.progress == 100 {
ship.in_motion = false;
} else {
ship.progress += 1;
}
}183 184 185 186 187 188 189 190 191 192 193 194 195
fn move_camera(
mut camera: Query<&mut Transform, With<CameraController>>,
mut current_view: Local<usize>,
button: Res<ButtonInput<MouseButton>>,
) {
let mut camera = camera.single_mut();
if button.just_pressed(MouseButton::Left) {
*current_view = (*current_view + 1) % CAMERA_POSITIONS.len();
}
let target = CAMERA_POSITIONS[*current_view];
camera.translation = camera.translation.lerp(target.translation, 0.2);
camera.rotation = camera.rotation.slerp(target.rotation, 0.2);
}sourcepub fn mul_vec3(self, rhs: Vec3) -> Vec3
pub fn mul_vec3(self, rhs: Vec3) -> Vec3
Multiplies a quaternion and a 3D vector, returning the rotated vector.
§Panics
Will panic if self is not normalized when glam_assert is enabled.
Examples found in repository?
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
fn rotate_camera(
mut camera: Query<&mut Transform, With<Camera>>,
app_status: Res<AppStatus>,
time: Res<Time>,
mut stopwatch: Local<Stopwatch>,
) {
if app_status.light_mode == LightMode::EnvironmentMap {
stopwatch.tick(time.delta());
}
let now = stopwatch.elapsed_secs();
for mut transform in camera.iter_mut() {
*transform = Transform::from_translation(
Quat::from_rotation_y(now).mul_vec3(CAMERA_INITIAL_POSITION),
)
.looking_at(Vec3::ZERO, Vec3::Y);
}
}sourcepub fn mul_quat(self, rhs: Quat) -> Quat
pub fn mul_quat(self, rhs: Quat) -> Quat
Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.
Note that due to floating point rounding the result may not be perfectly normalized.
§Panics
Will panic if self or rhs are not normalized when glam_assert is enabled.
sourcepub fn from_affine3(a: &Affine3A) -> Quat
pub fn from_affine3(a: &Affine3A) -> Quat
Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
sourcepub fn mul_vec3a(self, rhs: Vec3A) -> Vec3A
pub fn mul_vec3a(self, rhs: Vec3A) -> Vec3A
Multiplies a quaternion and a 3D vector, returning the rotated vector.
pub fn as_dquat(self) -> DQuat
pub fn as_f64(self) -> DQuat
Trait Implementations§
source§impl Add for Quat
impl Add for Quat
source§impl Animatable for Quat
impl Animatable for Quat
source§fn interpolate(a: &Quat, b: &Quat, t: f32) -> Quat
fn interpolate(a: &Quat, b: &Quat, t: f32) -> Quat
Performs a slerp to smoothly interpolate between quaternions.
source§fn blend(inputs: impl Iterator<Item = BlendInput<Quat>>) -> Quat
fn blend(inputs: impl Iterator<Item = BlendInput<Quat>>) -> Quat
source§fn post_process(&mut self, _world: &World)
fn post_process(&mut self, _world: &World)
World.
Most animatable types do not need to implement this.source§impl<'de> Deserialize<'de> for Quat
impl<'de> Deserialize<'de> for Quat
source§fn deserialize<D>(
deserializer: D,
) -> Result<Quat, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Quat, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
source§impl FromReflect for Quat
impl FromReflect for Quat
source§fn from_reflect(reflect: &(dyn Reflect + 'static)) -> Option<Quat>
fn from_reflect(reflect: &(dyn Reflect + 'static)) -> Option<Quat>
Self from a reflected value.source§fn take_from_reflect(
reflect: Box<dyn Reflect>,
) -> Result<Self, Box<dyn Reflect>>
fn take_from_reflect( reflect: Box<dyn Reflect>, ) -> Result<Self, Box<dyn Reflect>>
Self using,
constructing the value using from_reflect if that fails. Read moresource§impl GetTypeRegistration for Quat
impl GetTypeRegistration for Quat
source§fn get_type_registration() -> TypeRegistration
fn get_type_registration() -> TypeRegistration
TypeRegistration for this type.source§fn register_type_dependencies(registry: &mut TypeRegistry)
fn register_type_dependencies(registry: &mut TypeRegistry)
source§impl Mul for Quat
impl Mul for Quat
source§fn mul(self, rhs: Quat) -> Quat
fn mul(self, rhs: Quat) -> Quat
Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.
Note that due to floating point rounding the result may not be perfectly normalized.
§Panics
Will panic if self or rhs are not normalized when glam_assert is enabled.
source§impl MulAssign for Quat
impl MulAssign for Quat
source§fn mul_assign(&mut self, rhs: Quat)
fn mul_assign(&mut self, rhs: Quat)
Multiplies two quaternions. If they each represent a rotation, the result will represent the combined rotation.
Note that due to floating point rounding the result may not be perfectly normalized.
§Panics
Will panic if self or rhs are not normalized when glam_assert is enabled.
source§impl Reflect for Quat
impl Reflect for Quat
source§fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
fn get_represented_type_info(&self) -> Option<&'static TypeInfo>
source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut dyn Any.source§fn into_reflect(self: Box<Quat>) -> Box<dyn Reflect>
fn into_reflect(self: Box<Quat>) -> Box<dyn Reflect>
source§fn as_reflect(&self) -> &(dyn Reflect + 'static)
fn as_reflect(&self) -> &(dyn Reflect + 'static)
source§fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)
fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)
source§fn clone_value(&self) -> Box<dyn Reflect>
fn clone_value(&self) -> Box<dyn Reflect>
Reflect trait object. Read moresource§fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>
fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>
source§fn reflect_kind(&self) -> ReflectKind
fn reflect_kind(&self) -> ReflectKind
source§fn reflect_ref(&self) -> ReflectRef<'_>
fn reflect_ref(&self) -> ReflectRef<'_>
source§fn reflect_mut(&mut self) -> ReflectMut<'_>
fn reflect_mut(&mut self) -> ReflectMut<'_>
source§fn reflect_owned(self: Box<Quat>) -> ReflectOwned
fn reflect_owned(self: Box<Quat>) -> ReflectOwned
source§fn reflect_partial_eq(&self, value: &(dyn Reflect + 'static)) -> Option<bool>
fn reflect_partial_eq(&self, value: &(dyn Reflect + 'static)) -> Option<bool>
source§fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>
fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>
source§fn apply(&mut self, value: &(dyn Reflect + 'static))
fn apply(&mut self, value: &(dyn Reflect + 'static))
source§fn reflect_hash(&self) -> Option<u64>
fn reflect_hash(&self) -> Option<u64>
source§fn serializable(&self) -> Option<Serializable<'_>>
fn serializable(&self) -> Option<Serializable<'_>>
source§fn is_dynamic(&self) -> bool
fn is_dynamic(&self) -> bool
source§impl Serialize for Quat
impl Serialize for Quat
source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
source§impl Struct for Quat
impl Struct for Quat
source§fn field(&self, name: &str) -> Option<&(dyn Reflect + 'static)>
fn field(&self, name: &str) -> Option<&(dyn Reflect + 'static)>
name as a &dyn Reflect.source§fn field_mut(&mut self, name: &str) -> Option<&mut (dyn Reflect + 'static)>
fn field_mut(&mut self, name: &str) -> Option<&mut (dyn Reflect + 'static)>
name as a
&mut dyn Reflect.source§fn field_at(&self, index: usize) -> Option<&(dyn Reflect + 'static)>
fn field_at(&self, index: usize) -> Option<&(dyn Reflect + 'static)>
index as a
&dyn Reflect.source§fn field_at_mut(&mut self, index: usize) -> Option<&mut (dyn Reflect + 'static)>
fn field_at_mut(&mut self, index: usize) -> Option<&mut (dyn Reflect + 'static)>
index
as a &mut dyn Reflect.source§fn name_at(&self, index: usize) -> Option<&str>
fn name_at(&self, index: usize) -> Option<&str>
index.source§fn iter_fields(&self) -> FieldIter<'_> ⓘ
fn iter_fields(&self) -> FieldIter<'_> ⓘ
source§fn clone_dynamic(&self) -> DynamicStruct
fn clone_dynamic(&self) -> DynamicStruct
DynamicStruct.source§impl TypePath for Quat
impl TypePath for Quat
source§fn type_path() -> &'static str
fn type_path() -> &'static str
source§fn short_type_path() -> &'static str
fn short_type_path() -> &'static str
source§fn type_ident() -> Option<&'static str>
fn type_ident() -> Option<&'static str>
source§fn crate_name() -> Option<&'static str>
fn crate_name() -> Option<&'static str>
impl Copy for Quat
impl Pod for Quat
Auto Trait Implementations§
impl Freeze for Quat
impl RefUnwindSafe for Quat
impl Send for Quat
impl Sync for Quat
impl Unpin for Quat
impl UnwindSafe for Quat
Blanket Implementations§
source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T ShaderType for self. When used in AsBindGroup
derives, it is safe to assume that all images in self exist.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
source§type Bits = T
type Bits = T
Self must have the same layout as the specified Bits except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern.source§fn is_valid_bit_pattern(_bits: &T) -> bool
fn is_valid_bit_pattern(_bits: &T) -> bool
bits
as &Self.source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit)source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<T> DynamicTypePath for Twhere
T: TypePath,
impl<T> DynamicTypePath for Twhere
T: TypePath,
source§fn reflect_type_path(&self) -> &str
fn reflect_type_path(&self) -> &str
TypePath::type_path.source§fn reflect_short_type_path(&self) -> &str
fn reflect_short_type_path(&self) -> &str
source§fn reflect_type_ident(&self) -> Option<&str>
fn reflect_type_ident(&self) -> Option<&str>
TypePath::type_ident.source§fn reflect_crate_name(&self) -> Option<&str>
fn reflect_crate_name(&self) -> Option<&str>
TypePath::crate_name.source§fn reflect_module_path(&self) -> Option<&str>
fn reflect_module_path(&self) -> Option<&str>
source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Self using data from the given World.source§impl<S> GetField for Swhere
S: Struct,
impl<S> GetField for Swhere
S: Struct,
source§impl<T> GetPath for T
impl<T> GetPath for T
source§fn reflect_path<'p>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&(dyn Reflect + 'static), ReflectPathError<'p>>
fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn Reflect + 'static), ReflectPathError<'p>>
path. Read moresource§fn reflect_path_mut<'p>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut (dyn Reflect + 'static), ReflectPathError<'p>>
fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn Reflect + 'static), ReflectPathError<'p>>
path. Read moresource§fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
fn path<'p, T>(
&self,
path: impl ReflectPath<'p>,
) -> Result<&T, ReflectPathError<'p>>where
T: Reflect,
path. Read moresource§fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
fn path_mut<'p, T>(
&mut self,
path: impl ReflectPath<'p>,
) -> Result<&mut T, ReflectPathError<'p>>where
T: Reflect,
path. Read moresource§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moresource§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
source§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian().