Struct RwLockWriteGuard

Source
pub struct RwLockWriteGuard<'a, T>
where T: ?Sized,
{ /* private fields */ }
Expand description

RAII structure used to release the exclusive write access of a lock when dropped.

This structure is created by the write method on RwLock.

Implementations§

Source§

impl<'a, T> RwLockWriteGuard<'a, T>
where T: ?Sized,

Source

pub fn map<F, U>( this: RwLockWriteGuard<'a, T>, f: F, ) -> RwLockMappedWriteGuard<'a, U>
where F: FnOnce(&mut T) -> &mut U, U: ?Sized,

Makes a new RwLockMappedWriteGuard for a component of the locked data.

This operation cannot fail as the RwLockWriteGuard passed in already locked the data.

This is an associated function that needs to be used as RwLockWriteGuard::map(..). A method would interfere with methods of the same name on the contents of the locked data.

This is an asynchronous version of RwLockWriteGuard::map from the parking_lot crate.

§Examples
use tokio::sync::{RwLock, RwLockWriteGuard};

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Foo(u32);

let lock = RwLock::new(Foo(1));

{
    let mut mapped = RwLockWriteGuard::map(lock.write().await, |f| &mut f.0);
    *mapped = 2;
}

assert_eq!(Foo(2), *lock.read().await);
Source

pub fn downgrade_map<F, U>( this: RwLockWriteGuard<'a, T>, f: F, ) -> RwLockReadGuard<'a, U>
where F: FnOnce(&T) -> &U, U: ?Sized,

Makes a new RwLockReadGuard for a component of the locked data.

This operation cannot fail as the RwLockWriteGuard passed in already locked the data.

This is an associated function that needs to be used as RwLockWriteGuard::downgrade_map(..). A method would interfere with methods of the same name on the contents of the locked data.

This is equivalent to a combination of asynchronous RwLockWriteGuard::map and RwLockWriteGuard::downgrade from the parking_lot crate.

Inside of f, you retain exclusive access to the data, despite only being given a &T. Handing out a &mut T would result in unsoundness, as you could use interior mutability.

§Examples
use tokio::sync::{RwLock, RwLockWriteGuard};

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Foo(u32);

let lock = RwLock::new(Foo(1));

let mapped = RwLockWriteGuard::downgrade_map(lock.write().await, |f| &f.0);
let foo = lock.read().await;
assert_eq!(foo.0, *mapped);
Source

pub fn try_map<F, U>( this: RwLockWriteGuard<'a, T>, f: F, ) -> Result<RwLockMappedWriteGuard<'a, U>, RwLockWriteGuard<'a, T>>
where F: FnOnce(&mut T) -> Option<&mut U>, U: ?Sized,

Attempts to make a new RwLockMappedWriteGuard for a component of the locked data. The original guard is returned if the closure returns None.

This operation cannot fail as the RwLockWriteGuard passed in already locked the data.

This is an associated function that needs to be used as RwLockWriteGuard::try_map(...). A method would interfere with methods of the same name on the contents of the locked data.

This is an asynchronous version of RwLockWriteGuard::try_map from the parking_lot crate.

§Examples
use tokio::sync::{RwLock, RwLockWriteGuard};

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Foo(u32);

let lock = RwLock::new(Foo(1));

{
    let guard = lock.write().await;
    let mut guard = RwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail");
    *guard = 2;
}

assert_eq!(Foo(2), *lock.read().await);
Source

pub fn try_downgrade_map<F, U>( this: RwLockWriteGuard<'a, T>, f: F, ) -> Result<RwLockReadGuard<'a, U>, RwLockWriteGuard<'a, T>>
where F: FnOnce(&T) -> Option<&U>, U: ?Sized,

Attempts to make a new RwLockReadGuard for a component of the locked data. The original guard is returned if the closure returns None.

This operation cannot fail as the RwLockWriteGuard passed in already locked the data.

This is an associated function that needs to be used as RwLockWriteGuard::try_downgrade_map(...). A method would interfere with methods of the same name on the contents of the locked data.

This is equivalent to a combination of asynchronous RwLockWriteGuard::try_map and RwLockWriteGuard::downgrade from the parking_lot crate.

Inside of f, you retain exclusive access to the data, despite only being given a &T. Handing out a &mut T would result in unsoundness, as you could use interior mutability.

If this function returns Err(...), the lock is never unlocked nor downgraded.

§Examples
use tokio::sync::{RwLock, RwLockWriteGuard};

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct Foo(u32);

let lock = RwLock::new(Foo(1));

let guard = RwLockWriteGuard::try_downgrade_map(lock.write().await, |f| Some(&f.0)).expect("should not fail");
let foo = lock.read().await;
assert_eq!(foo.0, *guard);
Source

pub fn into_mapped( this: RwLockWriteGuard<'a, T>, ) -> RwLockMappedWriteGuard<'a, T>

Converts this RwLockWriteGuard into an RwLockMappedWriteGuard. This method can be used to store a non-mapped guard in a struct field that expects a mapped guard.

This is equivalent to calling RwLockWriteGuard::map(guard, |me| me).

Source

pub fn downgrade(self) -> RwLockReadGuard<'a, T>

Atomically downgrades a write lock into a read lock without allowing any writers to take exclusive access of the lock in the meantime.

Note: This won’t necessarily allow any additional readers to acquire locks, since RwLock is fair and it is possible that a writer is next in line.

Returns an RAII guard which will drop this read access of the RwLock when dropped.

§Examples
let lock = Arc::new(RwLock::new(1));

let n = lock.write().await;

let cloned_lock = lock.clone();
let handle = tokio::spawn(async move {
    *cloned_lock.write().await = 2;
});

let n = n.downgrade();
assert_eq!(*n, 1, "downgrade is atomic");

drop(n);
handle.await.unwrap();
assert_eq!(*lock.read().await, 2, "second writer obtained write lock");

Trait Implementations§

Source§

impl<'a, T> Debug for RwLockWriteGuard<'a, T>
where T: Debug + ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Deref for RwLockWriteGuard<'_, T>
where T: ?Sized,

Source§

type Target = T

The resulting type after dereferencing.
Source§

fn deref(&self) -> &T

Dereferences the value.
Source§

impl<T> DerefMut for RwLockWriteGuard<'_, T>
where T: ?Sized,

Source§

fn deref_mut(&mut self) -> &mut T

Mutably dereferences the value.
Source§

impl<'a, T> Display for RwLockWriteGuard<'a, T>
where T: Display + ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<'a, T> Drop for RwLockWriteGuard<'a, T>
where T: ?Sized,

Source§

fn drop(&mut self)

Executes the destructor for this type. Read more
Source§

impl<T> Send for RwLockWriteGuard<'_, T>
where T: Send + Sync + ?Sized,

Source§

impl<T> Sync for RwLockWriteGuard<'_, T>
where T: Send + Sync + ?Sized,

Auto Trait Implementations§

§

impl<'a, T> Freeze for RwLockWriteGuard<'a, T>
where T: ?Sized,

§

impl<'a, T> !RefUnwindSafe for RwLockWriteGuard<'a, T>

§

impl<'a, T> Unpin for RwLockWriteGuard<'a, T>
where T: ?Sized,

§

impl<'a, T> !UnwindSafe for RwLockWriteGuard<'a, T>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<R> Rng for R
where R: RngCore + ?Sized,

Source§

fn random<T>(&mut self) -> T

Return a random value via the StandardUniform distribution. Read more
Source§

fn random_iter<T>(self) -> Iter<StandardUniform, Self, T>

Return an iterator over random variates Read more
Source§

fn random_range<T, R>(&mut self, range: R) -> T
where T: SampleUniform, R: SampleRange<T>,

Generate a random value in the given range. Read more
Source§

fn random_bool(&mut self, p: f64) -> bool

Return a bool with a probability p of being true. Read more
Source§

fn random_ratio(&mut self, numerator: u32, denominator: u32) -> bool

Return a bool with a probability of numerator/denominator of being true. Read more
Source§

fn sample<T, D>(&mut self, distr: D) -> T
where D: Distribution<T>,

Sample a new value, using the given distribution. Read more
Source§

fn sample_iter<T, D>(self, distr: D) -> Iter<D, Self, T>
where D: Distribution<T>, Self: Sized,

Create an iterator that generates values using the given distribution. Read more
Source§

fn fill<T>(&mut self, dest: &mut T)
where T: Fill + ?Sized,

Fill any type implementing Fill with random data Read more
Source§

fn gen<T>(&mut self) -> T

👎Deprecated since 0.9.0: Renamed to random to avoid conflict with the new gen keyword in Rust 2024.
Alias for Rng::random.
Source§

fn gen_range<T, R>(&mut self, range: R) -> T
where T: SampleUniform, R: SampleRange<T>,

👎Deprecated since 0.9.0: Renamed to random_range
Source§

fn gen_bool(&mut self, p: f64) -> bool

👎Deprecated since 0.9.0: Renamed to random_bool
Alias for Rng::random_bool.
Source§

fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool

👎Deprecated since 0.9.0: Renamed to random_ratio
Source§

impl<T> RngCore for T
where T: DerefMut, <T as Deref>::Target: RngCore,

Source§

fn next_u32(&mut self) -> u32

Return the next random u32. Read more
Source§

fn next_u64(&mut self) -> u64

Return the next random u64. Read more
Source§

fn fill_bytes(&mut self, dst: &mut [u8])

Fill dest with random data. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<R> TryRngCore for R
where R: RngCore + ?Sized,

Source§

type Error = Infallible

The type returned in the event of a RNG error.
Source§

fn try_next_u32(&mut self) -> Result<u32, <R as TryRngCore>::Error>

Return the next random u32.
Source§

fn try_next_u64(&mut self) -> Result<u64, <R as TryRngCore>::Error>

Return the next random u64.
Source§

fn try_fill_bytes( &mut self, dst: &mut [u8], ) -> Result<(), <R as TryRngCore>::Error>

Fill dest entirely with random data.
Source§

fn unwrap_err(self) -> UnwrapErr<Self>
where Self: Sized,

Wrap RNG with the UnwrapErr wrapper.
Source§

fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self>

Wrap RNG with the UnwrapMut wrapper.
Source§

fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
where Self: Sized,

Convert an RngCore to a RngReadAdapter.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> CryptoRng for T
where T: DerefMut, <T as Deref>::Target: CryptoRng,

Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> Formattable for T
where T: Deref, <T as Deref>::Target: Formattable,

Source§

impl<T> Parsable for T
where T: Deref, <T as Deref>::Target: Parsable,

Source§

impl<R> TryCryptoRng for R
where R: CryptoRng + ?Sized,