[−][src]Struct basic_dsp_vector::numbers::Complex
A complex number in Cartesian form.
Representation and Foreign Function Interface Compatibility
Complex<T> is memory layout compatible with an array [T; 2].
Note that Complex<F> where F is a floating point type is only memory
layout compatible with C's complex types, not necessarily calling
convention compatible. This means that for FFI you can only pass
Complex<F> behind a pointer, not as a value.
Examples
Example of extern function declaration.
use num_complex::Complex; use std::os::raw::c_int; extern "C" { fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>, x: *const Complex<f64>, incx: *const c_int, y: *mut Complex<f64>, incy: *const c_int); }
Fields
re: TReal portion of the complex number
im: TImaginary portion of the complex number
Methods
impl<T> Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
pub fn new(re: T, im: T) -> Complex<T>[src]
Create a new Complex
pub fn i() -> Complex<T>[src]
Returns imaginary unit
pub fn norm_sqr(&self) -> T[src]
Returns the square of the norm (since T doesn't necessarily
have a sqrt function), i.e. re^2 + im^2.
pub fn scale(&self, t: T) -> Complex<T>[src]
Multiplies self by the scalar t.
pub fn unscale(&self, t: T) -> Complex<T>[src]
Divides self by the scalar t.
impl<T> Complex<T> where
T: Neg<Output = T> + Clone + Num, [src]
T: Neg<Output = T> + Clone + Num,
pub fn conj(&self) -> Complex<T>[src]
Returns the complex conjugate. i.e. re - i im
pub fn inv(&self) -> Complex<T>[src]
Returns 1/self
impl<T> Complex<T> where
T: Clone + Float, [src]
T: Clone + Float,
pub fn norm(&self) -> T[src]
Calculate |self|
pub fn arg(&self) -> T[src]
Calculate the principal Arg of self.
pub fn to_polar(&self) -> (T, T)[src]
Convert to polar form (r, theta), such that
self = r * exp(i * theta)
pub fn from_polar(r: &T, theta: &T) -> Complex<T>[src]
Convert a polar representation into a complex number.
pub fn exp(&self) -> Complex<T>[src]
Computes e^(self), where e is the base of the natural logarithm.
pub fn ln(&self) -> Complex<T>[src]
Computes the principal value of natural logarithm of self.
This function has one branch cut:
(-∞, 0], continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π.
pub fn sqrt(&self) -> Complex<T>[src]
Computes the principal value of the square root of self.
This function has one branch cut:
(-∞, 0), continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2.
pub fn powf(&self, exp: T) -> Complex<T>[src]
Raises self to a floating point power.
pub fn log(&self, base: T) -> Complex<T>[src]
Returns the logarithm of self with respect to an arbitrary base.
pub fn powc(&self, exp: Complex<T>) -> Complex<T>[src]
Raises self to a complex power.
pub fn expf(&self, base: T) -> Complex<T>[src]
Raises a floating point number to the complex power self.
pub fn sin(&self) -> Complex<T>[src]
Computes the sine of self.
pub fn cos(&self) -> Complex<T>[src]
Computes the cosine of self.
pub fn tan(&self) -> Complex<T>[src]
Computes the tangent of self.
pub fn asin(&self) -> Complex<T>[src]
Computes the principal value of the inverse sine of self.
This function has two branch cuts:
(-∞, -1), continuous from above.(1, ∞), continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2.
pub fn acos(&self) -> Complex<T>[src]
Computes the principal value of the inverse cosine of self.
This function has two branch cuts:
(-∞, -1), continuous from above.(1, ∞), continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π.
pub fn atan(&self) -> Complex<T>[src]
Computes the principal value of the inverse tangent of self.
This function has two branch cuts:
(-∞i, -i], continuous from the left.[i, ∞i), continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2.
pub fn sinh(&self) -> Complex<T>[src]
Computes the hyperbolic sine of self.
pub fn cosh(&self) -> Complex<T>[src]
Computes the hyperbolic cosine of self.
pub fn tanh(&self) -> Complex<T>[src]
Computes the hyperbolic tangent of self.
pub fn asinh(&self) -> Complex<T>[src]
Computes the principal value of inverse hyperbolic sine of self.
This function has two branch cuts:
(-∞i, -i), continuous from the left.(i, ∞i), continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2.
pub fn acosh(&self) -> Complex<T>[src]
Computes the principal value of inverse hyperbolic cosine of self.
This function has one branch cut:
(-∞, 1), continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π and 0 ≤ Re(acosh(z)) < ∞.
pub fn atanh(&self) -> Complex<T>[src]
Computes the principal value of inverse hyperbolic tangent of self.
This function has two branch cuts:
(-∞, -1], continuous from above.[1, ∞), continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2.
impl<T> Complex<T> where
T: Clone + FloatCore, [src]
T: Clone + FloatCore,
pub fn is_nan(self) -> bool[src]
Checks if the given complex number is NaN
pub fn is_infinite(self) -> bool[src]
Checks if the given complex number is infinite
pub fn is_finite(self) -> bool[src]
Checks if the given complex number is finite
pub fn is_normal(self) -> bool[src]
Checks if the given complex number is normal
Trait Implementations
impl<T> PartialEq<Complex<T>> for Complex<T> where
T: PartialEq<T>, [src]
T: PartialEq<T>,
impl<T> Debug for Complex<T> where
T: Debug, [src]
T: Debug,
impl<T> NumCast for Complex<T> where
T: NumCast + Num, [src]
T: NumCast + Num,
fn from<U>(n: U) -> Option<Complex<T>> where
U: ToPrimitive, [src]
U: ToPrimitive,
impl<T> Num for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type FromStrRadixErr = ParseComplexError<<T as Num>::FromStrRadixErr>
fn from_str_radix(
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>[src]
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
Parses a +/- bi; ai +/- b; a; or bi where a and b are of type T
impl<T> Hash for Complex<T> where
T: Hash, [src]
T: Hash,
fn hash<__HT>(&self, state: &mut __HT) where
__HT: Hasher, [src]
__HT: Hasher,
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
Feeds a slice of this type into the given [Hasher]. Read more
impl<'a, T> Inv for &'a Complex<T> where
T: Neg<Output = T> + Clone + Num, [src]
T: Neg<Output = T> + Clone + Num,
impl<T> Inv for Complex<T> where
T: Neg<Output = T> + Clone + Num, [src]
T: Neg<Output = T> + Clone + Num,
impl<T> Default for Complex<T> where
T: Default, [src]
T: Default,
impl<T> Binary for Complex<T> where
T: Binary + Num + PartialOrd<T> + Clone, [src]
T: Binary + Num + PartialOrd<T> + Clone,
impl<T> FromStr for Complex<T> where
T: FromStr + Num + Clone, [src]
T: FromStr + Num + Clone,
type Err = ParseComplexError<<T as FromStr>::Err>
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Complex<T>, <Complex<T> as FromStr>::Err>[src]
Parses a +/- bi; ai +/- b; a; or bi where a and b are of type T
impl<T> FromPrimitive for Complex<T> where
T: FromPrimitive + Num, [src]
T: FromPrimitive + Num,
fn from_usize(n: usize) -> Option<Complex<T>>[src]
fn from_isize(n: isize) -> Option<Complex<T>>[src]
fn from_u8(n: u8) -> Option<Complex<T>>[src]
fn from_u16(n: u16) -> Option<Complex<T>>[src]
fn from_u32(n: u32) -> Option<Complex<T>>[src]
fn from_u64(n: u64) -> Option<Complex<T>>[src]
fn from_i8(n: i8) -> Option<Complex<T>>[src]
fn from_i16(n: i16) -> Option<Complex<T>>[src]
fn from_i32(n: i32) -> Option<Complex<T>>[src]
fn from_i64(n: i64) -> Option<Complex<T>>[src]
fn from_u128(n: u128) -> Option<Complex<T>>[src]
fn from_i128(n: i128) -> Option<Complex<T>>[src]
fn from_f32(n: f32) -> Option<Complex<T>>[src]
fn from_f64(n: f64) -> Option<Complex<T>>[src]
impl<T> LowerHex for Complex<T> where
T: LowerHex + Num + PartialOrd<T> + Clone, [src]
T: LowerHex + Num + PartialOrd<T> + Clone,
impl<'a, T> From<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<T> From<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<'a, T> AddAssign<&'a T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn add_assign(&mut self, other: &T)[src]
impl<T> AddAssign<T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn add_assign(&mut self, other: T)[src]
impl<T> AddAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn add_assign(&mut self, other: Complex<T>)[src]
impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn add_assign(&mut self, other: &Complex<T>)[src]
impl<T> Copy for Complex<T> where
T: Copy, [src]
T: Copy,
impl<T> Display for Complex<T> where
T: Display + Num + PartialOrd<T> + Clone, [src]
T: Display + Num + PartialOrd<T> + Clone,
impl<T> Neg for Complex<T> where
T: Neg<Output = T> + Clone + Num, [src]
T: Neg<Output = T> + Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn neg(self) -> Complex<T>[src]
impl<'a, T> Neg for &'a Complex<T> where
T: Neg<Output = T> + Clone + Num, [src]
T: Neg<Output = T> + Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn neg(self) -> Complex<T>[src]
impl<T> LowerExp for Complex<T> where
T: LowerExp + Num + PartialOrd<T> + Clone, [src]
T: LowerExp + Num + PartialOrd<T> + Clone,
impl<T> UpperExp for Complex<T> where
T: UpperExp + Num + PartialOrd<T> + Clone, [src]
T: UpperExp + Num + PartialOrd<T> + Clone,
impl<'a, 'b, T> Rem<&'b Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: &Complex<T>) -> Complex<T>[src]
impl<T> Rem<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, modulus: Complex<T>) -> Complex<T>[src]
impl<'a, T> Rem<&'a Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, T> Rem<T> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: T) -> Complex<T>[src]
impl<'a, 'b, T> Rem<&'a T> for &'b Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: &T) -> Complex<T>[src]
impl<'a, T> Rem<Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: Complex<T>) -> Complex<T>[src]
impl<T> Rem<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: T) -> Complex<T>[src]
impl<'a, T> Rem<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the % operator.
fn rem(self, other: &T) -> Complex<T>[src]
impl<T> Eq for Complex<T> where
T: Eq, [src]
T: Eq,
impl<T> Sum<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<'a, T> Sum<&'a Complex<T>> for Complex<T> where
T: 'a + Clone + Num, [src]
T: 'a + Clone + Num,
impl<'a, T> Sub<T> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: T) -> Complex<T>[src]
impl<'a, 'b, T> Sub<&'a T> for &'b Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: &T) -> Complex<T>[src]
impl<'a, T> Sub<Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: Complex<T>) -> Complex<T>[src]
impl<'a, T> Sub<&'a Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: &Complex<T>) -> Complex<T>[src]
impl<T> Sub<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: Complex<T>) -> Complex<T>[src]
impl<'a, 'b, T> Sub<&'b Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: &Complex<T>) -> Complex<T>[src]
impl<T> Sub<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: T) -> Complex<T>[src]
impl<'a, T> Sub<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the - operator.
fn sub(self, other: &T) -> Complex<T>[src]
impl<T> UpperHex for Complex<T> where
T: UpperHex + Num + PartialOrd<T> + Clone, [src]
T: UpperHex + Num + PartialOrd<T> + Clone,
impl<T> Zero for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<'a, T> Add<&'a Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, T> Add<Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: Complex<T>) -> Complex<T>[src]
impl<T> Add<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: T) -> Complex<T>[src]
impl<'a, 'b, T> Add<&'b Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, 'b, T> Add<&'a T> for &'b Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: &T) -> Complex<T>[src]
impl<'a, T> Add<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: &T) -> Complex<T>[src]
impl<T> Add<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: Complex<T>) -> Complex<T>[src]
impl<'a, T> Add<T> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the + operator.
fn add(self, other: T) -> Complex<T>[src]
impl<T> One for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<T> Div<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: Complex<T>) -> Complex<T>[src]
impl<'a, 'b, T> Div<&'a T> for &'b Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: &T) -> Complex<T>[src]
impl<T> Div<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: T) -> Complex<T>[src]
impl<'a, T> Div<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: &T) -> Complex<T>[src]
impl<'a, T> Div<T> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: T) -> Complex<T>[src]
impl<'a, T> Div<Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: Complex<T>) -> Complex<T>[src]
impl<'a, 'b, T> Div<&'b Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, T> Div<&'a Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the / operator.
fn div(self, other: &Complex<T>) -> Complex<T>[src]
impl<T, U> AsPrimitive<U> for Complex<T> where
T: AsPrimitive<U>,
U: 'static + Copy, [src]
T: AsPrimitive<U>,
U: 'static + Copy,
impl<'a, T> Product<&'a Complex<T>> for Complex<T> where
T: 'a + Clone + Num, [src]
T: 'a + Clone + Num,
impl<T> Product<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
impl<T> ToPrimitive for Complex<T> where
T: ToPrimitive + Num, [src]
T: ToPrimitive + Num,
fn to_usize(&self) -> Option<usize>[src]
fn to_isize(&self) -> Option<isize>[src]
fn to_u8(&self) -> Option<u8>[src]
fn to_u16(&self) -> Option<u16>[src]
fn to_u32(&self) -> Option<u32>[src]
fn to_u64(&self) -> Option<u64>[src]
fn to_i8(&self) -> Option<i8>[src]
fn to_i16(&self) -> Option<i16>[src]
fn to_i32(&self) -> Option<i32>[src]
fn to_i64(&self) -> Option<i64>[src]
fn to_u128(&self) -> Option<u128>[src]
fn to_i128(&self) -> Option<i128>[src]
fn to_f32(&self) -> Option<f32>[src]
fn to_f64(&self) -> Option<f64>[src]
impl<'a, T> DivAssign<&'a T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn div_assign(&mut self, other: &T)[src]
impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn div_assign(&mut self, other: &Complex<T>)[src]
impl<T> DivAssign<T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn div_assign(&mut self, other: T)[src]
impl<T> DivAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn div_assign(&mut self, other: Complex<T>)[src]
impl<T> Octal for Complex<T> where
T: Octal + Num + PartialOrd<T> + Clone, [src]
T: Octal + Num + PartialOrd<T> + Clone,
impl<'a, 'b, T> Mul<&'b Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, T> Mul<&'a T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: &T) -> Complex<T>[src]
impl<'a, T> Mul<&'a Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: &Complex<T>) -> Complex<T>[src]
impl<'a, T> Mul<Complex<T>> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: Complex<T>) -> Complex<T>[src]
impl<T> Mul<Complex<T>> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: Complex<T>) -> Complex<T>[src]
impl<T> Mul<T> for Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: T) -> Complex<T>[src]
impl<'a, T> Mul<T> for &'a Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: T) -> Complex<T>[src]
impl<'a, 'b, T> Mul<&'a T> for &'b Complex<T> where
T: Clone + Num, [src]
T: Clone + Num,
type Output = Complex<T>
The resulting type after applying the * operator.
fn mul(self, other: &T) -> Complex<T>[src]
impl<T> RemAssign<T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn rem_assign(&mut self, other: T)[src]
impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn rem_assign(&mut self, other: &Complex<T>)[src]
impl<'a, T> RemAssign<&'a T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn rem_assign(&mut self, other: &T)[src]
impl<T> RemAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn rem_assign(&mut self, other: Complex<T>)[src]
impl<T> SubAssign<T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn sub_assign(&mut self, other: T)[src]
impl<T> SubAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn sub_assign(&mut self, other: Complex<T>)[src]
impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn sub_assign(&mut self, other: &Complex<T>)[src]
impl<'a, T> SubAssign<&'a T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn sub_assign(&mut self, other: &T)[src]
impl<T> Clone for Complex<T> where
T: Clone, [src]
T: Clone,
fn clone(&self) -> Complex<T>[src]
fn clone_from(&mut self, source: &Self)1.0.0[src]
Performs copy-assignment from source. Read more
impl<T> MulAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn mul_assign(&mut self, other: Complex<T>)[src]
impl<'a, T> MulAssign<&'a T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn mul_assign(&mut self, other: &T)[src]
impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn mul_assign(&mut self, other: &Complex<T>)[src]
impl<T> MulAssign<T> for Complex<T> where
T: Clone + NumAssign, [src]
T: Clone + NumAssign,
fn mul_assign(&mut self, other: T)[src]
impl<S, T, D, N> ScaleOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
impl<S, T, N, D> OffsetOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
impl<S, O, T, N, D, NO, DO> DotProductOps<O, Complex<T>, T, NO, DO> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
O: Vector<T> + GetMetaData<T, NO, DO>,
NO: PosEq<N> + NumberSpace,
DO: PosEq<D> + Domain, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
O: Vector<T> + GetMetaData<T, NO, DO>,
NO: PosEq<N> + NumberSpace,
DO: PosEq<D> + Domain,
type Output = ScalarResult<Complex<T>>
fn dot_product(&self, factor: &O) -> ScalarResult<Complex<T>>[src]
impl<S, O, T, N, D, NO, DO> PreciseDotProductOps<O, Complex<T>, T, NO, DO> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
O: Vector<T> + GetMetaData<T, NO, DO>,
NO: PosEq<N> + NumberSpace,
DO: PosEq<D> + Domain, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
O: Vector<T> + GetMetaData<T, NO, DO>,
NO: PosEq<N> + NumberSpace,
DO: PosEq<D> + Domain,
type Output = ScalarResult<Complex<T>>
fn dot_product_prec(&self, factor: &O) -> ScalarResult<Complex<T>>[src]
impl<S, T, N, D> MapInplaceOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSliceMut<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
fn map_inplace<'a, A, F>(&mut self, argument: A, map: &F) where
A: Sync + Copy + Send,
F: Fn(Complex<T>, usize, A) -> Complex<T> + 'a + Sync, [src]
A: Sync + Copy + Send,
F: Fn(Complex<T>, usize, A) -> Complex<T> + 'a + Sync,
impl<S, T, N, D, R> MapAggregateOps<Complex<T>, R> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
R: Send, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
R: Send,
type Output = ScalarResult<R>
fn map_aggregate<'a, A, FMap, FAggr>(
&self,
argument: A,
map: &FMap,
aggregate: &FAggr
) -> ScalarResult<R> where
A: Sync + Copy + Send,
FMap: Fn(Complex<T>, usize, A) -> R + 'a + Sync,
FAggr: Fn(R, R) -> R + 'a + Sync + Send, [src]
&self,
argument: A,
map: &FMap,
aggregate: &FAggr
) -> ScalarResult<R> where
A: Sync + Copy + Send,
FMap: Fn(Complex<T>, usize, A) -> R + 'a + Sync,
FAggr: Fn(R, R) -> R + 'a + Sync + Send,
impl<S, T, N, D> StatisticsOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
type Result = Statistics<Complex<T>>
fn statistics(&self) -> Statistics<Complex<T>>[src]
impl<S, T, N, D> StatisticsSplitOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
type Result = StatsVec<Statistics<Complex<T>>>
fn statistics_split(
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<T>>>>[src]
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<T>>>>
impl<S, T, N, D> SumOps<Complex<T>> for DspVec<S, T, N, D> where
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<T>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain,
impl<T> Stats<Complex<T>> for Statistics<Complex<T>> where
T: RealNumber, [src]
T: RealNumber,
fn empty() -> Self[src]
fn invalid() -> Self[src]
fn merge(stats: &[Statistics<Complex<T>>]) -> Statistics<Complex<T>>[src]
fn merge_cols(stats: &[StatsVec<Self>]) -> StatsVec<Self>[src]
fn empty_vec(len: usize) -> StatsVec<Self>[src]
fn add(&mut self, elem: Complex<T>, index: usize)[src]
impl<S, N, D> PreciseStatisticsOps<Complex<f64>> for DspVec<S, f32, N, D> where
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain,
type Result = Statistics<Complex<f64>>
fn statistics_prec(&self) -> Statistics<Complex<f64>>[src]
impl<S, N, D> PreciseStatisticsOps<Complex<f64>> for DspVec<S, f64, N, D> where
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain,
type Result = Statistics<Complex<f64>>
fn statistics_prec(&self) -> Statistics<Complex<f64>>[src]
impl<S, N, D> PreciseStatisticsSplitOps<Complex<f64>> for DspVec<S, f32, N, D> where
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain,
type Result = StatsVec<Statistics<Complex<f64>>>
fn statistics_split_prec(
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<f64>>>>[src]
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<f64>>>>
impl<S, N, D> PreciseStatisticsSplitOps<Complex<f64>> for DspVec<S, f64, N, D> where
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain,
type Result = StatsVec<Statistics<Complex<f64>>>
fn statistics_split_prec(
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<f64>>>>[src]
&self,
len: usize
) -> ScalarResult<StatsVec<Statistics<Complex<f64>>>>
impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f32, N, D> where
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f32>,
N: ComplexNumberSpace,
D: Domain,
impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f64, N, D> where
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain, [src]
S: ToSlice<f64>,
N: ComplexNumberSpace,
D: Domain,
impl<T> PreciseStats<Complex<T>> for Statistics<Complex<T>> where
T: RealNumber, [src]
T: RealNumber,
fn add_prec(
&mut self,
elem: Complex<T>,
index: usize,
sumc: &mut Complex<T>,
rmsc: &mut Complex<T>
)[src]
&mut self,
elem: Complex<T>,
index: usize,
sumc: &mut Complex<T>,
rmsc: &mut Complex<T>
)
impl<T> Zero for Complex<T> where
T: DspNumber, [src]
T: DspNumber,
Auto Trait Implementations
Blanket Implementations
impl<T> Zero for T where
T: DspNumber, [src]
T: DspNumber,
impl<T, U> Into for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
impl<T> ToString for T where
T: Display + ?Sized, [src]
T: Display + ?Sized,
impl<T> From for T[src]
impl<T, U> TryFrom for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T> Borrow for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T, U> TryInto for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T, Rhs, Output> NumOps for T where
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>, [src]
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,
impl<T> NumRef for T where
T: Num + NumOps<&'r T, T>, [src]
T: Num + NumOps<&'r T, T>,
impl<T, Base> RefNum for T where
T: NumOps<Base, Base> + NumOps<&'r Base, Base>, [src]
T: NumOps<Base, Base> + NumOps<&'r Base, Base>,
impl<T, Rhs> NumAssignOps for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>, [src]
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
impl<T> NumAssign for T where
T: Num + NumAssignOps<T>, [src]
T: Num + NumAssignOps<T>,
impl<T> NumAssignRef for T where
T: NumAssign + NumAssignOps<&'r T>, [src]
T: NumAssign + NumAssignOps<&'r T>,