Struct basic_dsp_vector::combined_ops::Identifier [−][src]
pub struct Identifier<T, N, D> where
T: RealNumber,
D: Domain,
N: NumberSpace, { /* fields omitted */ }An identifier is just a placeholder for a data type used to ensure already at compile time that operations are valid.
Trait Implementations
impl<T, N, D> GetMetaData<T, N, D> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> GetMetaData<T, N, D> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn get_meta_data(&self) -> TypeMetaData<T, N, D>[src]
fn get_meta_data(&self) -> TypeMetaData<T, N, D>Gets a copy of the vector meta data. This can be used to create new types with the same meta data. Read more
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for RealTimeIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for RealTimeIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn rededicate_from_force(origin: Identifier<T, N, D>) -> Self[src]
fn rededicate_from_force(origin: Identifier<T, N, D>) -> SelfMake Other a Self without performing any checks.
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> Self[src]
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> SelfMake Other a Self without performing any checks. Read more
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for RealFreqIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for RealFreqIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn rededicate_from_force(origin: Identifier<T, N, D>) -> Self[src]
fn rededicate_from_force(origin: Identifier<T, N, D>) -> SelfMake Other a Self without performing any checks.
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> Self[src]
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> SelfMake Other a Self without performing any checks. Read more
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for ComplexTimeIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for ComplexTimeIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn rededicate_from_force(origin: Identifier<T, N, D>) -> Self[src]
fn rededicate_from_force(origin: Identifier<T, N, D>) -> SelfMake Other a Self without performing any checks.
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> Self[src]
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> SelfMake Other a Self without performing any checks. Read more
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for ComplexFreqIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for ComplexFreqIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn rededicate_from_force(origin: Identifier<T, N, D>) -> Self[src]
fn rededicate_from_force(origin: Identifier<T, N, D>) -> SelfMake Other a Self without performing any checks.
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> Self[src]
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
_: bool,
_: DataDomain
) -> SelfMake Other a Self without performing any checks. Read more
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for GenDspIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RededicateForceOps<Identifier<T, N, D>> for GenDspIdent<T> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn rededicate_from_force(origin: Identifier<T, N, D>) -> Self[src]
fn rededicate_from_force(origin: Identifier<T, N, D>) -> SelfMake Other a Self without performing any checks.
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
is_complex: bool,
domain: DataDomain
) -> Self[src]
fn rededicate_with_runtime_data(
origin: Identifier<T, N, D>,
is_complex: bool,
domain: DataDomain
) -> SelfMake Other a Self without performing any checks. Read more
impl<T, N, D> OffsetOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> OffsetOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, impl<T, N, D> ScaleOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> ScaleOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, impl<T, N, D> OffsetOps<Complex<T>> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
impl<T, N, D> OffsetOps<Complex<T>> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, impl<T, N, D> ScaleOps<Complex<T>> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
impl<T, N, D> ScaleOps<Complex<T>> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, impl<T, N, D> TrigOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> TrigOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn sin(&mut self)[src]
fn sin(&mut self)Calculates the sine of each element in radians. Read more
fn cos(&mut self)[src]
fn cos(&mut self)Calculates the cosine of each element in radians. Read more
fn tan(&mut self)[src]
fn tan(&mut self)Calculates the tangent of each element in radians.
fn asin(&mut self)[src]
fn asin(&mut self)Calculates the principal value of the inverse sine of each element in radians.
fn acos(&mut self)[src]
fn acos(&mut self)Calculates the principal value of the inverse cosine of each element in radians.
fn atan(&mut self)[src]
fn atan(&mut self)Calculates the principal value of the inverse tangent of each element in radians.
fn sinh(&mut self)[src]
fn sinh(&mut self)Calculates the hyperbolic sine each element in radians.
fn cosh(&mut self)[src]
fn cosh(&mut self)Calculates the hyperbolic cosine each element in radians.
fn tanh(&mut self)[src]
fn tanh(&mut self)Calculates the hyperbolic tangent each element in radians.
fn asinh(&mut self)[src]
fn asinh(&mut self)Calculates the principal value of the inverse hyperbolic sine of each element in radians.
fn acosh(&mut self)[src]
fn acosh(&mut self)Calculates the principal value of the inverse hyperbolic cosine of each element in radians.
fn atanh(&mut self)[src]
fn atanh(&mut self)Calculates the principal value of the inverse hyperbolic tangent of each element in radians. Read more
impl<T, N, D> PowerOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> PowerOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn sqrt(&mut self)[src]
fn sqrt(&mut self)Gets the square root of all vector elements. Read more
fn square(&mut self)[src]
fn square(&mut self)Squares all vector elements. Read more
fn root(&mut self, degree: T)[src]
fn root(&mut self, degree: T)Calculates the n-th root of every vector element. Read more
fn powf(&mut self, exponent: T)[src]
fn powf(&mut self, exponent: T)Raises every vector element to a floating point power. Read more
fn ln(&mut self)[src]
fn ln(&mut self)Computes the principal value of natural logarithm of every element in the vector. Read more
fn exp(&mut self)[src]
fn exp(&mut self)Calculates the natural exponential for every vector element. Read more
fn log(&mut self, base: T)[src]
fn log(&mut self, base: T)Calculates the logarithm to the given base for every vector element. Read more
fn expf(&mut self, base: T)[src]
fn expf(&mut self, base: T)Calculates the exponential to the given base for every vector element. Read more
impl<T, N, D> RealOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> RealOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, impl<T, N, D> ComplexOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
impl<T, N, D> ComplexOps<T> for Identifier<T, N, D> where
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, fn multiply_complex_exponential(&mut self, a: T, b: T)[src]
fn multiply_complex_exponential(&mut self, a: T, b: T)Multiplies each vector element with exp(j*(a*idx*self.delta() + b)) where a and b are arguments and idx is the index of the data points in the vector ranging from 0 to self.points() - 1. j is the imaginary number and exp the exponential function. Read more
fn conj(&mut self)[src]
fn conj(&mut self)Calculates the complex conjugate of the vector. # Example Read more
impl<T, N, D> ElementaryOps<Identifier<T, N, D>, T, N, D> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> ElementaryOps<Identifier<T, N, D>, T, N, D> for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn add(&mut self, summand: &Self) -> VoidResult[src]
fn add(&mut self, summand: &Self) -> VoidResultCalculates the sum of self + summand. It consumes self and returns the result. # Failures TransRes may report the following ErrorReason members: Read more
fn sub(&mut self, subtrahend: &Self) -> VoidResult[src]
fn sub(&mut self, subtrahend: &Self) -> VoidResultCalculates the difference of self - subtrahend. It consumes self and returns the result. # Failures TransRes may report the following ErrorReason members: Read more
fn mul(&mut self, factor: &Self) -> VoidResult[src]
fn mul(&mut self, factor: &Self) -> VoidResultCalculates the product of self * factor. It consumes self and returns the result. # Failures TransRes may report the following ErrorReason members: Read more
fn div(&mut self, divisor: &Self) -> VoidResult[src]
fn div(&mut self, divisor: &Self) -> VoidResultCalculates the quotient of self / summand. It consumes self and returns the result. # Failures TransRes may report the following ErrorReason members: Read more
impl<T, N, D> IdentifierOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, [src]
impl<T, N, D> IdentifierOps for Identifier<T, N, D> where
T: RealNumber,
N: NumberSpace,
D: Domain, fn domain(&self) -> DataDomain[src]
fn domain(&self) -> DataDomainThe domain in which the data vector resides. Basically specifies the x-axis and the type of operations which are valid on this vector. Read more
fn is_complex(&self) -> bool[src]
fn is_complex(&self) -> boolIndicates whether the vector contains complex data. This also specifies the type of operations which are valid on this vector. Read more
fn clone_from(&mut self, source: &Self)[src]
fn clone_from(&mut self, source: &Self)Copies data from another vector.
fn add_points(&mut self)[src]
fn add_points(&mut self)Adds its length to the vector elements # Example Read more
fn sub_points(&mut self)[src]
fn sub_points(&mut self)Subtracts its length from the vector elements # Example Read more
fn div_points(&mut self)[src]
fn div_points(&mut self)divides the vector elements by its length Subtracts its length from the vector elements # Example Read more
fn mul_points(&mut self)[src]
fn mul_points(&mut self)Multiplies the vector elements with its length # Example Read more
impl<T, N, D> RealToComplexTransformsOps<T> for Identifier<T, N, D> where
Identifier<T, N, D>: ToComplexResult,
<Identifier<T, N, D> as ToComplexResult>::ComplexResult: RededicateForceOps<Identifier<T, N, D>>,
T: RealNumber,
N: RealNumberSpace,
D: Domain, [src]
impl<T, N, D> RealToComplexTransformsOps<T> for Identifier<T, N, D> where
Identifier<T, N, D>: ToComplexResult,
<Identifier<T, N, D> as ToComplexResult>::ComplexResult: RededicateForceOps<Identifier<T, N, D>>,
T: RealNumber,
N: RealNumberSpace,
D: Domain, fn to_complex(self) -> TransRes<Self::ComplexResult>[src]
fn to_complex(self) -> TransRes<Self::ComplexResult>Converts the real vector into a complex vector. Read more
impl<T, N, D> ComplexToRealTransformsOps<T> for Identifier<T, N, D> where
Identifier<T, N, D>: ToRealResult,
<Identifier<T, N, D> as ToRealResult>::RealResult: RededicateForceOps<Identifier<T, N, D>>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, [src]
impl<T, N, D> ComplexToRealTransformsOps<T> for Identifier<T, N, D> where
Identifier<T, N, D>: ToRealResult,
<Identifier<T, N, D> as ToRealResult>::RealResult: RededicateForceOps<Identifier<T, N, D>>,
T: RealNumber,
N: ComplexNumberSpace,
D: Domain, fn magnitude(self) -> Self::RealResult[src]
fn magnitude(self) -> Self::RealResultGets the absolute value, magnitude or norm of all vector elements. # Example Read more
fn magnitude_squared(self) -> Self::RealResult[src]
fn magnitude_squared(self) -> Self::RealResultGets the square root of the absolute value of all vector elements. # Example Read more
fn to_real(self) -> Self::RealResult[src]
fn to_real(self) -> Self::RealResultGets all real elements. # Example Read more
fn to_imag(self) -> Self::RealResult[src]
fn to_imag(self) -> Self::RealResultGets all imag elements. # Example Read more
fn phase(self) -> Self::RealResult[src]
fn phase(self) -> Self::RealResultGets the phase of all elements in [rad]. # Example Read more
impl<T, N, D> Debug for Identifier<T, N, D> where
T: RealNumber,
D: Domain,
N: NumberSpace, [src]
impl<T, N, D> Debug for Identifier<T, N, D> where
T: RealNumber,
D: Domain,
N: NumberSpace, Auto Trait Implementations
impl<T, N, D> Send for Identifier<T, N, D> where
D: Send,
N: Send,
impl<T, N, D> Send for Identifier<T, N, D> where
D: Send,
N: Send, impl<T, N, D> Sync for Identifier<T, N, D> where
D: Sync,
N: Sync,
impl<T, N, D> Sync for Identifier<T, N, D> where
D: Sync,
N: Sync,