Trait basic_dsp::PreciseSumOps [−][src]
pub trait PreciseSumOps<T> {
fn sum_prec(&self) -> T;
fn sum_sq_prec(&self) -> T;
}Expand description
Offers the same functionality as the SumOps trait but
the sums are calculated in a more precise (and slower) way.
Required methods
Calculates the sum of the data contained in the vector using a more precise but slower algorithm.
Example
use basic_dsp_vector::*; let vector = vec!(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0), Complex::new(5.0, 6.0)).to_complex_time_vec(); let result = vector.sum_prec(); assert_eq!(result, Complex64::new(9.0, 12.0)); }
fn sum_sq_prec(&self) -> T[src]
fn sum_sq_prec(&self) -> T[src]Calculates the sum of the squared data contained in the vector using a more precise but slower algorithm.
Example
use basic_dsp_vector::*; let vector = vec!(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0), Complex::new(5.0, 6.0)).to_complex_time_vec(); let result = vector.sum_sq_prec(); assert_eq!(result, Complex64::new(-21.0, 88.0)); }
Implementors
impl<S, N, D> PreciseSumOps<f64> for DspVec<S, f32, N, D> where
N: RealNumberSpace,
S: ToSlice<f32>,
D: Domain, [src]
impl<S, N, D> PreciseSumOps<f64> for DspVec<S, f32, N, D> where
N: RealNumberSpace,
S: ToSlice<f32>,
D: Domain, [src]impl<S, N, D> PreciseSumOps<f64> for DspVec<S, f64, N, D> where
N: RealNumberSpace,
S: ToSlice<f64>,
D: Domain, [src]
impl<S, N, D> PreciseSumOps<f64> for DspVec<S, f64, N, D> where
N: RealNumberSpace,
S: ToSlice<f64>,
D: Domain, [src]impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f32, N, D> where
N: ComplexNumberSpace,
S: ToSlice<f32>,
D: Domain, [src]
impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f32, N, D> where
N: ComplexNumberSpace,
S: ToSlice<f32>,
D: Domain, [src]impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f64, N, D> where
N: ComplexNumberSpace,
S: ToSlice<f64>,
D: Domain, [src]
impl<S, N, D> PreciseSumOps<Complex<f64>> for DspVec<S, f64, N, D> where
N: ComplexNumberSpace,
S: ToSlice<f64>,
D: Domain, [src]impl<S, V, T, O> PreciseSumOps<[O; 2]> for Matrix2xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]
impl<S, V, T, O> PreciseSumOps<[O; 2]> for Matrix2xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]impl<S, V, T, O> PreciseSumOps<[O; 3]> for Matrix3xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]
impl<S, V, T, O> PreciseSumOps<[O; 3]> for Matrix3xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]impl<S, V, T, O> PreciseSumOps<[O; 4]> for Matrix4xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]
impl<S, V, T, O> PreciseSumOps<[O; 4]> for Matrix4xN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]impl<S, V, T, O> PreciseSumOps<Vec<O, Global>> for MatrixMxN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]
impl<S, V, T, O> PreciseSumOps<Vec<O, Global>> for MatrixMxN<V, S, T> where
T: RealNumber,
V: Vector<T> + PreciseSumOps<O>,
S: ToSlice<T>,
O: RealNumber, [src]