1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
use crate::error;
use crate::lang::Error;

type Result<T> = std::result::Result<T, Error>;

/// ## Stack enforced and size limited vector

#[derive(Clone)]
pub struct Stack<T> {
    overflow_message: &'static str,
    vec: Vec<T>,
}

impl<T: std::fmt::Debug> std::fmt::Debug for Stack<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:?}", self.vec)
    }
}

impl<T> Stack<T> {
    pub fn new(overflow_message: &'static str) -> Stack<T> {
        Stack {
            overflow_message,
            vec: vec![],
        }
    }
    fn max_len(&self) -> usize {
        u16::max_value() as usize
    }
    fn overflow_check(&self) -> Result<()> {
        if self.vec.len() > self.max_len() {
            Err(error!(OutOfMemory; self.overflow_message))
        } else {
            Ok(())
        }
    }
    fn underflow_error(&self) -> Error {
        error!(InternalError; "UNDERFLOW")
    }
    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
        self.vec.get_mut(index)
    }
    pub fn clear(&mut self) {
        self.vec.clear()
    }
    pub fn drain<R>(&mut self, range: R) -> std::vec::Drain<'_, T>
    where
        R: std::ops::RangeBounds<usize>,
    {
        debug_assert!(range.end_bound() == std::ops::Bound::Unbounded);
        self.vec.drain(range)
    }
    pub fn len(&self) -> usize {
        self.vec.len()
    }
    pub fn is_empty(&self) -> bool {
        self.vec.is_empty()
    }
    pub fn is_full(&self) -> bool {
        self.vec.len() > self.max_len() - 32
    }
    pub fn last(&self) -> Option<&T> {
        self.vec.last()
    }
    pub fn get(&self, index: usize) -> Option<&T> {
        self.vec.get(index)
    }
    pub fn append(&mut self, other: &mut Stack<T>) -> Result<()> {
        self.vec.append(&mut other.vec);
        self.overflow_check()
    }
    pub fn push(&mut self, val: T) -> Result<()> {
        self.vec.push(val);
        self.overflow_check()
    }
    pub fn pop(&mut self) -> Result<T> {
        match self.vec.pop() {
            Some(v) => Ok(v),
            None => Err(self.underflow_error()),
        }
    }
    pub fn pop_2(&mut self) -> Result<(T, T)> {
        let two = self.pop()?;
        let one = self.pop()?;
        Ok((one, two))
    }
    pub fn pop_n(&mut self, len: usize) -> Result<Stack<T>> {
        if len > self.vec.len() {
            Err(self.underflow_error())
        } else {
            let range = (self.vec.len() - len as usize)..;
            let mut st: Stack<T> = Stack::new(self.overflow_message);
            for item in self.drain(range) {
                st.push(item)?;
            }
            Ok(st)
        }
    }
}

impl<T> IntoIterator for Stack<T> {
    type Item = T;
    type IntoIter = std::vec::IntoIter<Self::Item>;

    fn into_iter(self) -> Self::IntoIter {
        self.vec.into_iter()
    }
}